G PLEDGER

Automated deployment and orchestration on the edge

Pledger Handbook

(P pgocer

Table of Contents

(7

BIE: o] (o) B 0] T o USSR 2
LSt OF TaDIES ...ttt bbbttt 5
LSE OF FIGUIES ...ttt b e bbbt b nen et ereas 6
1 PLEDGER N @ NUESNEIL ..ottt nre 8
1.1 Main Objectives and added VAIUEcccecveiiiiiiie ittt s re e 9
1.2 PLEDGER AFCNITECIUE.......eiueiiiieieieiteee sttt sttt ste et sre s e benneeneesteeneeneas 11
121 Configuration SUDSYSIEMcc.oiiiiiieci e st sre s 14
1.2.2 Orchestration SUDSYSTEMciviireieieiei sttt 15
1.2.3 Benchmarking SUDSYSIEIMcviiiiiie et sre s 16
1.24 SLA SUBSYSTEIM ...ttt 17
1.25 BIOCKCh@IN SUDSYSIEM ...ttt st sre s 18
1.2.6 Big Data Platform and Communication SUDSYSEEMc.ccovieiiniiiieniiiiceses 19
1.2.7 SECUMLY SUDSYSTEIM ...ttt sttt te e s be et et s re e e sresneesreares 20

2 PLEDGER StEP DY SEP.....cuiitiititeieieieie sttt sttt sttt b e nne e 21
2.1 ACCESSING the SYSTEIMuiiiiiiieiie ettt e s e e e st e be e st e be e b e sbeeteenbesreeneenes 21
211 An admin configures service providers and infrastructure providers users................. 21
2.1.2 An infrastructure provider access to the system to configure infrastructures.............. 22
2.1.3 A service provider access to the system to configure DApps and deployment preferences

23

2.2 Infrastructure BeNChMArKINGccvoiiiic e e e 25
221 Enable benchmarking of a specific infrastructure.c.cooeeeieieininiicnc e 26
2.2.2 Benchmarking Suite is notified and starts the execution of benchmarking tests......... 27
2.2.3 Report is shared with the Decision Support System (DSS).......ccccocvvvviininiininenenenns 27
2.2.4 Manual tuning of benchmarking tests and analysis of resultsccccceeeviiieienenn, 28

2.3 APPHCALION PrOFITINGcviiiieieiei bbb 29
2.3.1 The App Profiler is automatically started when Application is deployed. 29
2.3.2 Resource usage data is collected and analysed.cccocveveieeieie i 31
2.3.1 App Profiler composes a profile vector and classifies the application. 31
2.3.2 Classification results are shared with the DSS. ..o 32
P e (01 o[- YT [o S 33
24.1 T&R engine constantly analyses the SLA violations information for each of the
INTrASTFUCTUNE PIOVITETS. ...ttt bbbttt bbb na e 33
2.4.2 It ranks the available provides and presents them through a user interface to the client

so that he can select the most suitable one for deploying a specific application.cc.c........ 34

2.5 CONFIGUIING QOS ... oot bbbttt bbbt 37
251 A service provider states the guarantees for an application............cccccocvreiiiiiieinnnnn. 37
25.2 A SLA template, including metrics, thresholds and severity level is created.............. 39
253 The template is used by the DSS to receive SLA violationsccocevevevviviiennne. 40

PLEDGER
Handbook

2.6 Deployment CONFIQUIALIONoiviiiieicie ettt re e 42
2.6.1 DSS analyses all the information provided and develops the most suitable deployment
scheme. 42
2.6.2 DSS computes the best node and notifies the orchestrator to start the deployment of the
application 44

2.7 Generating SMAIT CONMIACTES.ccuviieieieeeeiese ettt e te e s e e et e e e e st e s e e sae st e eseesbeereentesreenee e 46
2.7.1 Once the SLA template is created, the blockchain framework is notified................... 46
2.7.2 SLA-SC gathers the SLA guarantees and converts them into a smart contract between
the service provider and the infrastructure Provider. ..o 46
2.7.3 Smart contract is accessible in a readable manner by the two parties.cccceeveeee 47

2.8 ApPlIcation dePIOYMENL.........ccoeiiiiee et e st e s re et e nre s e e 49
2.8.1 The orchestrator receives the notification from the DSS for deploying an application.

49
2.8.2 Orchestrator deploys the application in the selected node and starts it.c.......... 50
2.8.3 The Monitoring Engine starts automatically to monitor the application health. 50

2.9 E2E SHICING .ttt ettt 51
29.1 The infrastructure provider starts the network slice creation process using the
(070 1 ST oV ol TP R PSPPI 51
2.9.2 The SOE Framework and the RAN Controller execute the required actions for the
creation and activation of the NEtWOIK SHICE.cuiiiiiiiiie e 52
2.9.3 Once the slice is activated, the service provider can instantiate a (network) service
through the CONTSEIVICE.c.oiiiie s 53

2.10 SecUurity CONFIGUIALIONScviiiicic ettt sre et et s re e 56

2.10.1 An infrastructure provider can use PLEDGER IDPS for managing virtualized intrusion
detection 56

P2 B S I ANV o - 1 o SR 61
211.1 Monitoring engine gathers and stores data about an application health. 61
2112 The data is analysed by the SLA Manager to identify if there’s any breach in the
APPIICATION GUAIANTEES. ... ettt bbbt bbb 61
2.11.3 If there is any violation detected, the SLA Manager sends this information to the
Blockchain Framework and the DSS to take any corrective action.ccccocevvvvininencncnenen, 61

2.12 Application redeplOYMENT...........ccoii i e e 62
2.12.1 Whenever an SLA violation occurs and the DSS is notified, it takes the decision of
redeploying an application in order Not t0 10Se QOS.cooviiiiiiriieieeee e 62
2.12.2 DSS notifies the OrCheStrator.ccocvviiiieieeees e 63
2.12.3 The Orchestrator stops the application, deploys it in a different node and starts it again.

63

N G T o= 0 T 1TSS 65
2131 The Blockchain Framework receives the same notification and based on the severity
level, decides the penalty to be applied to the infrastructure provider...........cccccooevoviieiiiiicenennnn 65
2.13.2 This information is available within the smart contract.............ccccevvviiiieveiceresene 65

3 APPLCADIILY BXAMPIESottt ettt et et nre e 68

3.1 Edge infrastructure for enhancing safety vulnerable road USErScccooviiiiieneneneicicen 68

G PLEDGER
Handbook

311 Infrastructure management: NetWork SliCiNg.cccccvvvevevecicse s 68
3.1.2 SMANT CONTIACES ...ttt ettt ettt sbe e b sae e nbe e 70
3.1.3 Sensitive information management with Pledger’s DLT.........ccccocviiiiiiniincciicnenes 71
3.14 Delay management with Pledger’s DSS.........cccoiiiiiiii e 72
3.2 Manufacturing the data mMining 0N AQE........ccveiiiiiie e e 74
321 Automated deployment and performance Monitoringccoceeeeveveeienineneseseseenens 74
3.2.2 Automated offloading of applications to the cloud based on decision making............ 75
3.2.3 Management of sensitive INFOrMAationccceoveiiiiiiii e 76

G PLEDGER
Handbook

List of Tables

Table 1: ConfService demos 0N YOUTUDEcuiiiiiiiiieiie et 24
Table 2: DSS deployment OPtIONS TEMO.........ciiiiiiiiiie ittt eb et sr e ebe e 44
Table 3: DSS OptiMiSAtiON TEMOScviiiiiiitiiieiite ettt b e eb bt b e bt eb e bt ebesn e b e 63

(P rpoen

List of Figures

Figure 1: subsystems view of the Pledger COre SYSTEMooiiiiriiiiiieiei et 12
Figure 2: Pledger Core System in the form of a Component diagram..........cccceeveirireineniiieee e 13
Figure 3: Configuration subsystem Component DIAgIaMccuveiiireieiniieisieeee et 14
Figure 4: Orchestration subsystem Component DIagramccoeiiireririnerieineeee et 15
Figure 5: Benchmarking subsystem Component DIagramccccveieierieienesieeieieesesesiesreseseeseesee e sressesseenens 16
Figure 6: SLA subsystem CompOoNent DIAGIAMcc.ciueiuiiiieieeieeierie e e s ste s e e e e resreste e eseeaessessesrestesreaneas 17
Figure 7: Blockchain subsystem Component DIagramcccvcviieieiesieseseseeseeseeseesesre e seeseesaesee e seessessesnens 18
Figure 8: Big Data Platform subsystem Component DIagramcccceiieiereiieeiieieseseseseeseeeereesees e e e seenens 19
Figure 9: Security subsystem CompONENt DIAgIraM.........ccviiiirieerieiesieseseseseesie e see e seesreseeseeeessessesresressesnens 20
Figure 10: ConfService: USErs WIth TOIEScccioiiiiie ittt snesre e eneas 21
Figure 11: ConfService: definition of Pledger SP and IP USEISccoiiiiiiiiiieieiccsce e 22
Figure 12: ConfService: infrastructure with monitoring plugin and resources capacityc.cccooerevirerennienn 22
Figure 13: ConfService: nodes with feature auto-discovery features working to identify HW availability.......... 23
Figure 14: ConfService: CAtalOg @PPSevererreeerirtiieiirt ettt sttt ettt sb bbbttt b bbb e nb s 23
Figure 15: ConfService: DApp composed by multiple services with K8S descriptorccocvvvvenvcnencinienn 24
Figure 16: Benchmarking Suite inStallation STEPScviiieiieiiie et 25
Figure 17: ConfService Project Creation and benchmarking enabling...........cccccooviiviiiici e, 26
Figure 18: Benchmarking execution SeqUENCE dIagIamccociueiiiriieieeieeseesie e e e steeseete e see e e e e sneenas 27
Figure 19: Benchmarking Reports stored in the DSScoiiiie e 28
Figure 20: Application profiling diagramcceiiiiiiiieie et sae e 29
Figure 21: kafkajs-CoONSUMEr NOUE PrOPEITIESecviiiieiieeiieeieee st este e te et e e st e sta e te e teeraesneesreesaeesneeneas 30
Figure 22: kafkajs-consumer trustosre and keystore paths configuration.............cccoeevenioninnineneneees 30
Figure 23: Application service tagged with syshench prediction ... 30
Figure 24: Node-RED debUQ CONSOIEc.oiuiiiiiiiitiei ettt bttt 32
Figure 25: kafkajs-ConNSUMEr NOUE PFOPEITIESciviiiiiriiietirteieie sttt bbb 33
FIgUre 26: BaSIC T&R MENU ..eiuiitiiiiiitiieeiiete ettt b bbbt eb bbbttt e e nb s 34
Figure 27: Trust QUETYING FOFM ..c.oiiiiiiiic ettt bbbt bbb 34
Figure 28: Reputation qQUENYING TOFMcoiiii et e st et be et e e s e e e sneenneenas 35
Figure 29: Top 10 providers By FePULALION...........c.eiiiiieieeicee et te e te e e e e sneenneenas 35
Figure 30: Client-provider trust and reputation INAEXEScc.veiveiieiieeiee e e e sre e sre e e 36
Figure 31: ConfService: SLA defiNitionccccoviiiiiiiii et 37
Figure 32: ConfService: SLA definition detailScccveiieiiiiiic s 37
Figure 33: ConfService: Guarantees defiNition............cocveiiiiiiic i 38
Figure 34: ConfService: Guarantees definition detailS ..o 38
Figure 35: Kafka: SLA Creation MESSAQEcviviriiiitirieeetisteeeie sttt sttt et eb bbb b et b et abe s 39
Figure 36: SLA Framework SWagger UL SLA ..ottt 40
Figure 37: SLA Framework 10gS: SLA VIOIATION.ciiiiiiiiiiiiciseese e 41
Figure 38: Kafka: SLA VIOIAtioN MESSAGEevereivirieiiitiitiieti sttt sttt ettt 41
Figure 39: DSS: SLA VIOIationSs FECEIVEAcviiiiiiiciic ettt te e reesne e saeenas 41
Figure 40: DSS main interactions With COre COMPONENES.cccveiiiiiiiiie st 42
Figure 41: DSS: ServiceConstraints, setup by the SP, to express deployment preferences........c.ccccoeevevevvevnnnne. 43
Figure 42: DSS deployment options for a specific App based on the ServiceConstraintscccoccevevevvevinnne. 43
Figure 43: DSS optimisation algorithm configurationcccoceiiiiiii e 44
Figure 44: DSS optimisation algorithm SCENAIIOS..........ccveiuieiiiie et e et e e e sre s 45
Figure 45: Blockchain receiving NOLIfICALIONS.cviiiiiiiiieic b 46
Figure 46: Blockchain creates the SMart CONIACE............ooviiiiiiiriir e 47
Figure 47: Blockchain deploys and submits the Smart CONractccoceviiriiiiieieree e 47
Figure 48: Smart contract accessible DY PArtIES.coiiiiiiiie e 48
Figure 49: Kafka: App deployMENnt MESSAGE .. .c.viirviieiiriiieiiiteieest ettt 49
Figure 50: CONfSErvICE: APP FUNNMING......iiitiriiietirteiete sttt sttt ettt bbbt b et ees st e bt sb e b e s nb e enenbe s 50
Figure 51: End-to-end slice configuration from the CONfSErVICE ..o 52
Figure 52: End-to-end slice management from the CONfSEIVICE ...t 52
Figure 53: AP deploYMENTt OPLIONSc..iiuiitiie ittt bttt e bbb bt bt b e e e et e besbesbesbeeneas 53
Figure 54: Service creation and CONFIGUIALIONcouiiiiiii i e 54
Figure 55: Application MANAGEMENT...........ciiiiiieieieie ettt bbbt besbe b e beebe e e e b e besbesbesbeeneas 55
Figure 56: Distributed Cybersecurity platform architeCture. ..o 56

G PLEDGER
Handbook

file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473240
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473241
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473242
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473243
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473244
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473245
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473246
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473248
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473269
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473270
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473271
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473272

(7

Figure 57: Threat DeteCtion MOAE — IDScviioieice ettt ne e e e e snesreaneeneas 58
Figure 58: HONEYPOT MOUE — IDS.......c.iiiiitiieiieiiie ettt bbbttt bbbt 58
FIgUre 59: MaIN @IEITS PAGEcveitieeeiitiieeiet ettt bbb bbbttt e et b et b n et 59
FIQUIE B0: TRIEALS PAGEvvvevereiteeeteitert ettt ettt ettt b bbb bbb bt bbbt bbbt b bbbt e bbbttt n b 59
Figure 61: FIows (geographiCal Origin)coeiiiiiiiiiiiiiiiit et 59
Figure 62: DSS: critical service found, that might require offload ... 62
Figure 63: DSS: steady service found, that might require a scale dOWNcccoviriininiinines 62
Figure 64: E2CO Swagger Ul: APPlICAtioN SLALUScceieiiiiiiiieeie e se st sre et se e e e sresre e eneas 64
Figure 65: User balance has been impacted due to SLA Breach. ... 65
Figure 66: A logged in user checks their DAlanCe............cccviiiiiieiicic e 65
Figure 67: A warning violation Stored 0N the DLTcccciiiiiieiieieie et e e e sresre e eneas 66
Figure 68: A serious violation Stored 0N the DLTcccccciiiiiiiieiieie sttt e e e e sresre e eneas 66
Figure 69: A catastrophic violation stored 0N the DLTccccvriiiieieiese et eneas 67
Figure 70: Network slicing WOrKflOW in the USE CASEc.ciiiiiiriiiiiiee e 69
Figure 71: End-to-end V2X slicing - integration diagram...........cccoeoiiriiiinineineeeseese s 70
Figure 72: Pledger's smart contracts in road Safety USE CASEccviriiiiriiiiiinieeeseeee e 71
Figure 73: Management of sensitive USer infOrmationcccooiriiiiiiiii s 72
Figure 74: Management of a critical RDNS Service in PIEAEr ..o 73
Figure 75: Automatic deployment and performance monitoring in UC3cccccviriininiineneneecseeecnies 75
Figure 76: Automated offloading iN UC3 ..ot esre e 75
Figure 77: Management of sensitive information iN UCS3............ccooiiiiiii e 76
PLEDGER

Handbook

file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473281
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473289
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473290
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473291
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473292
file:///C:/Users/trick/Dropbox/Pledger/PLEDGER_Handbook_V1.0.docx%23_Toc128473293

(7

1 PLEDGER in a nutshell

With the number of connected devices continuously growing, the need for processing data near to
them to avoid latency issues and provide real-time responses is also increasing. Translating this growth
into numbers, the global edge computing market will reach USD 8.96 billion by 2023, growing at a
CAGR of 32.6%*. Only at European level this growth will represents USD 1.94 billion by the same time,
growing at a CAGR of 29.3%?2. This is mainly due to the increased demand for low-latency and real-time
solutions to avoid network traffic bottlenecks. However, cloud computing will not disappear, but its
capabilities will be extended closer to the edge in the so-called fog computing paradigm (also known
as fogging or edge computing).

In this context, PLEDGER delivers a new architectural paradigm and a toolset that paves the way for
next generation edge computing infrastructures, tackling the modern challenges faced today and
coupling the benefits of low latencies on the edge, with the robustness and resilience of cloud
infrastructures. This toolset allows third parties to act as independent validators of QoS features in loT
applications, enabling new decentralised applications and business models, thus filling a large gap in
the emerging edge/loT computing market landscape.

For doing so, PLEDGER brings a set of innovations explained as follows:
Smart contracts and blockchain

PLEDGER deploys and leverages a suite of blockchain related technologies along with smart contracts
in order to implement the requested features of the system. Solid innovation concepts rely on the
ability to couple Distributed Ledger technologies together with concepts and implementation from the
edge and cloud computing paradigms. In particular, the following:

e Private transactions in permissioned/enterprise blockchain networks. Unlike public
blockchains, these platforms constitute a business-suitable blockchain component that also
provides private transactions.

e Decentralised Applications executing on its blockchain exploiting all the legitimate edge user
data exchange and delivering high quality systems services information adding to the
PLEDGER’s overall value. This kind of applications are performing secure and immutable
blockchain transactions and can provide ways to automate metric measurements and other
important data retrieval through well-developed smart contracts and submitted transactions
without intermediaries.

e Privacy enhancing technologies supported by an advanced anonymous personalization service
framework. In cloud and edge environments a recommender system functionality along with
blockchain network technologies add to PLEDGER’s completeness in the sense of the
combination of different and useful capabilities.

Smart contracts on blockchains that embody SLA terms

SLA terms are of vital importance for any service offered through cloud environments. The specific
terms describe the level of quality of the specific service offered by the cloud providers. The way to
extend such SLA terms to edge computing environments necessitates new, innovative ways on how
the terms are being expressed. Moreover, by leveraging blockchain transactions time efficiency and
the ability to have pieces of code being executed when specific conditions are met provides an
innovative framework for a new generation of SLA monitoring and enforcement frameworks.

! R. a. Markets, «Global Edge Computing Market (2018-2023)». Available:
https://www.researchandmarkets.com/reports/4667633/global-edge-computing-market-2018-2023#rela0-
4667632.

2 R. a. Markets, «Europe Edge Computing Market (2018-2023)». Available:
https://www.researchandmarkets.com/research/4t4m3w/the_edge?w=4.

PLEDGER
Handbook

(7

Edge/Cloud SLA monitoring

There are several tools, or approached, already in the market for SLA monitoring. Some of them don’t
take into account application faults for the calculation or don’t consider different providers’ definition.

PLEDGER proposes an abstracted approach to monitor and manage SLAs regardless of the provider.
Thus, the main innovation potential of PLEDGER relies on auditing contracts in a provider compliant
manner, enable compensation claiming and introducing novelties to the market.

Edge/Cloud offloading and trade-off

Based on the current state of the art technologies, PLEDGER proposes an innovative decision support
mechanism for offloading activities taking into account several criteria, such as energy, cost,
bandwidth and computing requirements. It also considers additional parameters, such as SLA terms
and trust, smart contract terms, features of the deployed applications and privacy requirements. All
these considerations are used to take decisions about what should be moved from the edge up to the
cloud.

Edge/Cloud benchmarking

Benchmarking is a common technique for assessing application performance that is affected by several
factors external to the user. Based on already existing tools, PLEDGER extends them for edge
infrastructures taking into account the variety of edge nodes with different capabilities and software
available.

Privacy, trust and security on edge computing

PLEDGER approach includes a set of tools to offer multi-layer security protection at the edge, including
blockchain and machine learning algorithms to detect anomalies and prioritise risks. These tools also
support traceability, access control and GDPR- related functionalities.

Network slicing in 5G (and other) networks

Current trends turn the network into a platform to host services. More specifically, to run multiple
logical networks as virtually independent business operations into one physical infrastructure (network
slicing). These network slices must be able to run isolate, without affecting other slices. For this,
PLEDGER incorporate mechanisms to measure the degree of isolation by different providers, and how
to enforce isolation for each of them, over edge and fog infrastructures.

More information about how these innovations are part of the PLEDGER provided tools and how users
can benefit of them based on some applicability examples are further described in the next sections.

1.1 Main Objectives and added value

PLEDGER has 7 main objectives to add value for both, service and infrastructure edge/cloud providers,
as explained below:

Obj.1 Enhance edge/fog computing provider resource management practices that lead to improved
stability of offered services and QoS/QoE for end users.

PLEDGER provides a toolkit for end-to-end implementation of resource management practices that
can aid edge/fog computing providers in making informed decisions about application deployment and
service offer, via co-scheduling complementary applications from a resource utilisation point of view
for optimising the performance characteristics of the application at runtime. The tools cover aspects
such as resource usage monitoring, modelling of application types runtime characteristics,
collaborating with the typical cloud management toolkits for offering recommendation services
regarding service containers grouping on physical nodes on the cloud.

Obj.2 Architect and implement the coupling of edge/fog computing with blockchains and distributed
ledger technologies.

PLEDGER
Handbook

(7

10

PLEDGER target leveraging state-of-the-art architectural approaches and implementations to a higher
abstraction layer and common APIs, thus hiding the provider-specific details and technology specific
differentiations. This way, it may be used across the various toolkits included in the project without
modifications and aid in a faster uptake and easier deployment of the involved mechanisms. This
relates to measurement frameworks, deployment aspects (of applications and the toolkits) and
monitoring characteristics. The innovative architectural elements that PLEDGER introduces are
structured around the following axes:

e Achieving higher levels of trust in open trustless edge/fog infrastructures through the adoption
of blockchain related technologies and methodologies based on “proof-of-*” techniques (e.g.,
proof-of-work, proof-of-sake, etc.) that enable edge resources orchestrate themselves in a
trusted way.

e Allowing the implementation of smart contracts in edge infrastructure elements, combining
the abilities of high automation in executing code portions on the edge while combining at the
same time smart contracts with Service Level Agreements contractual negotiations.

e Allowing the deployment of decentralised applications (DApps) in large edge infrastructure
deployments as a new paradigm of applications for suitable use cases that can harness the
benefits of the distributed nature of edge computing.

Obj.3 Enhance cloud/edge services behaviour measurability and predictability in order to increase
operational trust, thus enabling their use in more critical applications and increase the synergies
between cloud/edge infrastructures.

PLEDGER offers tools to monitor the overall performance stability and efficiency of the resources (as
organized by the outcomes of Objective 1) through a suitable measurement and benchmarking
framework that may be used by the adopters. This aspect ensures and validates that experienced
performance guarantees are indeed met and thus enable providers to issue performance-based SLAs,
an aspect that is missing from the modern edge computing landscape, but also evaluate provider
performance. Hence, it will enable direct comparability, abstracted at the application level. The
measurement tools provided in PLEDGER will cover both the computing and the network domains,
leveraging (in the case of the network) novel SDN frameworks to gather network telemetry.

Obj.4 Define and apply sets of metrics that are meaningful to the end users for QoE and QoS levels.

PLEDGER defines and includes an extended set of metrics to characterise provider QoS/QoE levels and
offered SLAs in a way that is both comparable between the various definitions and easily grasped by
the end users of edge computing infrastructures. These metrics are abstracted from the backend
technical details that are needed for their definition and will be used to further abstract decision
making and service rating at the edge/cloud user and application level. Furthermore, they are
configurable based on user preferences and adapt provider rankings automatically, visualising them
towards the end user. In edge environments, the network cannot be overprovisioned like in a data
centre, thus PLEDGER edge providers leverage techniques such as SDN to orchestrate the connectivity
between distributed edge functions required to provide the required level of QoS/QoE.

Obj.5 Define and implement new ways of increasing security and privacy on edge, filtering out
(during the cloud moving process) with intelligent way the data that have to be kept on the edge.

PLEDGER engineers new levels of security and trust in large scale autonomous and trustless
multipurpose edge/cloud platforms and integrates Privacy Enhancing Technologies (PETs) at the
design level of PLEDGER’s architecture. It defines and implements a lightweight blockchain ledger and
the trust-ensuring mechanisms that enables machine-to-machine and human-to-machine transactions
with transparency, and all necessary security aspects (authentication, authorization, accounting, etc.).
PLEDGER provides applicable solutions on how PET is applied on the edge resources, thus suggesting
innovative ways on how end-to-end security can be achieved across the whole path from loT sensor
to edge and cloud computing and over public multipurpose infrastructures guaranteeing privacy and
confidentiality of the information flow.

PLEDGER
Handbook

(7

11

Obj.6 Pilot and demonstrate the applicability and scalability of the tools on large scale edge/cloud
infrastructures and for applications that typically need specialised oversized infrastructures.

PLEDGER tools are validated in edge/fog/cloud infrastructures of considerable size in order to
demonstrate both the scalability of the involved tools and the ability to utilize heterogeneous and
general usage edge/cloud computing setups for application cases that up to now demand specialised
and typically oversized infrastructures. The benefit of the usage of tools is further explained in this
document based on the pilots’ experience.

Obj.7 Enable the extension of the edge/cloud combined business model and provide an extensive
replicability and best practices framework.

PLEDGER aims at extending business models for the edge/fog/cloud combination as well as easing the
applicability and adaptation of such infrastructures to user requirements. In this context, it enables
new consulting roles and the tools to implement them, new entities to exploit and perform analytics
on top of concentrated data in terms of SLA, smart contracts and performance monitoring and new
application categories to exploit the benefits of the combined edge/cloud model. PLEDGER also
provides best practices and a wider replicability framework (both in technical and organizational
terms) that is expected to significantly contribute towards the future wider adoption of its findings in
multiple business environments.

1.2 PLEDGER Architecture

PLEDGER consists of two main types of subsystems which can be identified as follows:

e Core subsystems: The Pledger core system is considered the system that aggregates all the
core results and developed components of the project. Corresponding components result in
the “minimum viable product” (MVP) of Pledger, the system that will be freely available to
users and other projects and initiatives.

e Use Cases subsystems: The Pledger Use Case subsystems are considered the subsystems that
are developed for the pilots of the project. Use Case subsystems are considered the
subsystems that are used only for the sake of completing successfully the objectives of the
pilots per se (and not of the project as a whole).

As far as the core subsystems are concerned, the main ones that have been identified, are the
following:

1. Configuration subsystem: Subsystem responsible for providing and storing the infrastructure and
application configuration details.

2. Orchestration subsystem: Subsystem responsible for managing the orchestration of
containerized applications (actions related to the deployment of applications, infrastructure scale
up/down, etc.).

3. Benchmarking subsystem: Subsystem responsible for providing performance data of configured
infrastructures to better characterize them and to optimize the orchestration with suggestions on
application performance.

4. SLAs subsystem: Subsystem responsible for creating, managing and evaluating the SLAs
associated to the applications running on the Pledger Cloud and Edge environment.

5. Blockchain subsystem: Subsystem responsible for providing the Pledger DLT and the
corresponding middleware (set of tools offering features such as smart contracts and
cryptocurrencies).

6. Big Data & Communication Platform subsystem: Subsystem responsible for exposing a high-
performance distributed streaming platform for interconnecting, storing, and transforming.

7. Security subsystem: Subsystem responsible for enhancing the security of the overall system as a
whole.

PLEDGER
Handbook

(7

12

The above subsystems are split in three functional groups:

1 Management subsystems: Subsystems that are focused on the management of laaS and SaaS.
2 Evaluation subsystems: Subsystems that are focused on the evaluation of laaS.
3 Support subsystems: Supporting subsystems related to communications and security.

The following figure gives the subsystems view of the Pledger Core System. The view is not hierarchical
and the interrelations between the subsystems that are provided are the main ones.

! :
| |
i asubsystems E asubsystems E i
b Orchestration Configuration |
[|
]
|
]

Y

'Management) A

‘Subsystems '
| ¥ ¥ |
i aSubsystems E aSubsystems E i
! Benchmarking SLAs i
iEvaluation |
'Subsystems i
i \ 2 :
| aSUbsystems i
i Big Data & E asSubsystems E " asubsystems E]
' Communication Security B Blockchain |
ESprort Platform E
Subsystems. i

Figure 1: subsystems view of the Pledger Core System

PLEDGER
Handbook

13

The following figure gives the overall view of the Pledger Core System in the form of a Component
diagram. The diagram depicts all the different core components of the system as well as the
associations between them (mostly input/output relations), with some of the associations being
omitted to make the diagram easier to read. It also depicts the different subsystems as well as the
different subsystem groups.

Management Subsystems
«subsystem: Orchestration 2 | «subsystems Configuration £l
. daas
:SOE] M= | orchestrat o :Deployment £] contoraton nfo Configuration <
Framework Bl “orenestrator Engine Manager
store
fraluec ‘tngger
request to T :scating $j store _| Conf:i:zlr,alion $:|
reserve E "
radio send scaing & rigger 2 Engine Configuration oS Manager
roources) placing commands DB
p forward App
:RAN Controlier ot
. trigger
:Migration E ‘store metric App {l
trigger’ Engine values Profiler
g] sore =
rules & Automation :5aas & laas $j <UI & APl» {l
Gecisiong b8 retreve—| L Configuration
TECTITATE Engine retrieve Dashboard
repors current
metm:‘v alues
receive
i — ——infra & Anp
SLA properties.
‘violatiens” forwards infra
nofify about updates QoS
new tests it
“for SLA parameters
Evaluation Subsystems.
«5Ubsystems Benchmarking E «Subsystems SLAS E
provide
”uwn benchmarks ¢
<UI& APl» E settests {l - E =
:Benchmarking | — frequency, —» ‘Seneduler Croator SLA REST APl expose- :SLA manager [erertemanage SLAs
GUI & API isibitty, etc. Library
schedule define/update Finstanﬂa!m SLAS
tests execution bench. tesis &
retrieve workload
i definito jolat
il g] ey i — *SLA Notifier e vioion ‘SLAEvaluator | [*tore vauaton
:Benchmarking :Benchmarking
Analytics Executor
‘ retrieve
| = metrics values,
repor ¥
store performance: violation
define metrics Metrics DB SLA £] v ~—
higher-lev (Historical) +SLA Monitoring store mondoring “laas
metrics resu Evaluation
Data
forwards
SLAs historical
data
Support Subsystems.
«subsystem Big Data & Communication Platform $:| «subsyslems Security $j «subsystem» Blockchain $j
2] — El E
“Connectors Platiorm submt || “Transaction e commit || :Blockchain
configures- Administration oLt ‘ransaction Handler transaction Reader/Writer
! s mordo
use sends moniloring p)
e e etheve :TER Engine e szt
¥ 1 index values |
:Schema E d::(?—» :Streaming Core$:| —
Registry Rl Platiorm qar B = :SLA-SC bridge :SC manager
Anomalies —folo b
L) Detection Reasoner J T
access streaming refunds -
Senwees acknowiedgment Co 291
Ul & Cluster] . iniects security, ADPS & Iletwork$:| invoke,
Monitoring REST Proxy aeris Anomalies Detection Wallet Manager

Figure 2: Pledger Core System in the form of a Component diagram

The different subsystems and components are presented now in more detail:

G PLEDGER
Handbook

Configuration subsystem: The main responsibility of the Configuration subsystem is to store the
infrastructure and application configuration that is managed either manually by the laaS/ SaaS

1.2.1 Configuration subsystem

providers or by tools that support automatic discovery features (e.g., the App Profiler).

The main information stored is users’ configuration, infrastructure configuration, app configuration,
multitenancy and authorizations for users to access specific infrastructures within resource limitations

(e.g., resource quotas).

(7

asubsystemz Orchestration E «subsystem= Configuration $:|
trieve/send Jaas E
FeAnieve)/Ser Configuration b3
:0Orchestrator configuration m'ﬂage,
info slore
values trigger
store “App E
alues | Co ion €
Configuration youes Manager
:5aas & laas E = DB
Monitoring S“::ll_?:m forward App
Engine profies
Management .
Subsystems :App E et
Profiler
»
Hece . «Ul & APls E
properties :Configuration
Dashboard
forwards infra
configuration QoS
nofify about updates classification
B :éi:vymts for SLA parameters
«5ubsystem= Benchmarking E «5ubsystems SLAS $:|
—
. —
:Benchmarking E retrieve .
Scheduler Benchmarks "workloads :SLA REST API e—
§ Library
Evaluation
Subsystems
Figure 3: Configuration subsystem Component Diagram

Handbook

15

1.2.20rchestration subsystem

Orchestration subsystem: The Orchestration subsystem is the link between the Decision Support
System (DSS) and the underlying infrastructure, providing an abstraction layer on top of infrastructure
management tools of choice to the DSS. This way, it allows to decouple the DSS from the technical
implementation details and facilitates interoperability with diverse technical solutions and makes it
possible to transparently update and change low level infrastructure management tools. The DSS
(“Recommender” in the diagrams) will implement the intelligence of decision-making and the
Orchestrator will be the executor arm of DSS decisions (implementing on demand the necessary
actions).

This subsystem will manage orchestration of containerized applications (i.e. relying on Kubernetes
implementation) to handle its management. The actions foreseen for this subsystem are related to the
deployment of applications, infrastructure scale up/down and migration as well as operations in
relation to the operational life-cycle of applications (start, stop, update and get current status of the
application).

In addition, this subsystem also considers the management of complete clusters at different
infrastructure levels (cloud, edge, on premise) as well as the deployment of cluster orchestration
software (for single-node cluster) in the edge. The subsystem also features the necessary tools for slice
creation and management. The slicing concept applied in Pledger refers to the reservation of
computation and radio resources from a pool of available (physical and virtual) resources of an
infrastructure to form an isolated, logical cluster of nodes on top of which services can be deployed,
while enabling end-to-end connectivity between the radio access and the services deployed in the
computation nodes.

The Orchestration subsystem will be in charge of selecting the best nodes of a cluster (best effort) to
run an application based on the Saa$S provider’s preferences or the profile of the application (e.g. app
requires GPU to run) or the recommendations added by DSS at runtime. The Orchestrator will also
have receive input from a Monitoring Engine to collect different metrics of the infrastructure in a time
series database. With these functionalities we can settle the base for a QoS control system.

«subsystems Orchestration E «subsystem= Configuration E
i retrieve/send
:SOE E request S :Deployment E configuration info
€— slice — :Orchestrator o
Framework | crotion) Engine
request to
reserve T - :Scaling E
radio send scaling & noge! Engine Configuration
resources placing commands: DB
:RAN Controller
Subsystems N ‘Migration E store metric
irigger Engine values
recetve 2] store
:Recommender rues s —————>{ Rules/ :Saa$ & laas E
reports decisions. Automation refrieve__y Monitoring
DB values Engine ¢ refrieve _
current
metric values
receive I receive] L
SLA infra & App-
vi:1miuns properties
«Subsystem= Benchmarking E «SUDSYStéms SLAS $:|
S— El El
Metrics DB :SLA Notifier — :SLA Monitoring
. (Historical)
Evaluation
Subsystems

Figure 4: Orchestration subsystem Component Diagram

G PLEDGER
Handbook

(7

1.2.3 Benchmarking subsystem

16

Benchmarking subsystem: The main responsibility of the Benchmarking subsystem is to provide
performance data of configured infrastructures to better characterise them and to optimise the
orchestration with suggestions on application performance.

e
|
i asuUbsystemz Orchestration {I «subsystems= Configuration {I
i
|
|
I
5 . P
! 7 Profiler
;
| 2 |
Management o Ul & AP E
i :Recommender « =
:5"[’5“19"15 7 :Configuration
; Dashboard
|
I
S e v UUESRNN

forwards infra retrieve
. configuration —
___ nofiy about | updates MWooads
i
|
I
E asubsystems| Benchmarking E
i
| provide
i |_CIWI1 benchmarks & *
|
I
! aUl & APl E set tests :Benchmarking E :Benchmarking E
I :Benchmarking —— frequency, —™ Scheduler — Creator
i GUI & API visibility, etc.
I
I
i receive | |
! benchmark schedule define/update
| reports tests execution bench. tests &
i retrieve workload
I benchmarking definiions
| 5] 5] e
!) :Benchmarking :Benchmarking
{Evaluation Analytics Executor
\Subsystems
: Benchmarks [€
i | Library
i store performance
: define metrics ——* Metrics DB
! —higher-levet »| (Historical)
| metrics M
I
I
|
|
I
I
Figure 5: Benchmarking subsystem Component Diagram
PLEDGER

Handbook

17

1.2.4 SLA subsystem

SLAs subsystem: The SLAs subsystem is the subsystem responsible for creating, managing and
evaluating the SLAs associated to the applications running on the Pledger Cloud and Edge environment.
This subsystem relies on the information gathered by external monitoring tools, which are used to
continuously evaluate the SLAs, and to notify other components about violations or other relevant
information related to the QoS of these applications.

«Subsystem= Orchestration E «subsystem» Configuration E
:Saas & laas $j Ul & APz E
:Recommender Monitoring :Configuration
Management Engine Dashboard
N LY X
N ___ refrieve |
£y e
siolat metric values QDS

for SLA parameters

:SLA Notifier w :SLA Evaluator
Evaluation
y SLA]
refrieve
etrics values|
—
E — —_—
p— =
results Evaluation
Data
I
new
SLA
forwards N _
s ro «Subsystems Security E «subsystem: Blockchain E
data
> :T&R Engine :SLA-SC bridge
Support »

Figure 6: SLA subsystem Component Diagram

(P pgocer

18

1.2.5 Blockchain subsystem

Blockchain subsystem: Pledger will provide its own Blockchain/ Distributed Ledger, taking under
consideration features such as openness, access, speed, security, use of consensus/ security
mechanisms, etc. Depending on the implementation scenario chosen by the users (Blockchain as a
Service — Baas, vertical solutions, etc.) Pledger will also provide a set of tools offering features such as
smart contracts and cryptocurrencies, thus enabling a wide range of applications under different
business models.

«subsysiem: SLAs E
:SLA Notifier :SLA manager
Evaluation
Subsystems
aSubsystems Security E «subsystem: Blockchain E
—— = g |
submit _ | Transaction commit _| :Blockchain
DLT transaction Handler transaction Reader/Writer
execute
SC
new
N e | :SLA-SC bridge :5C manager
Support >
Subsystems -T&R Engine E P refunds | report SLA
- 9 B acknowledgment violation
invoke
:Wallet Manager = sc

Figure 7: Blockchain subsystem Component Diagram

G PLEDGER
Handbook

(7

1.2.6 Big Data Platform and Communication subsystem

19

Big Data Platform & Communication subsystem: The Big Data & Communication Platform subsystem
is the subsystem that exposes a high-performance distributed streaming platform for interconnecting,
storing, transforming. It can efficiently ingest and handle massive amounts of data into processing
pipelines, for both real-time and batch processing. The publish-subscribe mechanisms that this
platform offers, are used in order to facilitate the integration of the different subsystems of the Pledger
Core Platform. Producer applications can produce streams of data that are passed through the Big Data
& Communication Platform and written into topics. Then, one or more consumers’ applications may
read data from topics. This way, the software components of the Pledge Core system may
communicate with connections to the topics of the Big Data & Communication sub-system with a fault-

tolerant way.

a5Ubsystem= Big Data & Communication Platform

2

%]

2]

:Platform

LConnectors —configures— Administration
I A
use sends manitaring
schemas metrics
L J 1
-Schema E d:;;" -Streaming Coreil
Registry models Platform
£
access streaming
Services
1
:Ul & Cluster E {l
:REST Proxy

Monitoring

PLEDGER
Handbook

Figure 8: Big Data Platform subsystem Component Diagram

(7

20

1.2.7 Security subsystem

Security subsystem: By using blockchains one can also mitigate several of the trust issues. However, a
multi-layer approach is required to address security challenges at the edge. The Security subsystem
includes components that enhance the security of the overall system as a whole. Of course, several
other security features and mechanisms are included in other components of other subsystems, but
this subsystem is specifically focused on the security aspects of Pledger.

| 1
|]
; asubsystems SLAs :
i £l i
i |
i :SLA REST API i
| |
iEvaluation E
\Subsystems i
|

forwards
SLAs historical
___ data e
«subsystems Security E asubsystem: Blockchain E
i
store/
T&R retrieve
Indexes index values v
i Historical)
: E : » refunds __| . - |
retrieve :T&R Engine B ackn gment :SLA-SC bridge i
index values
| |
JerR] i
Anomalies —f |
Support i Rules
{Subsystems Detection Reasoner
|
|
! :IDP!";&Networll'.{|
i Anomalies Detection
1
|
Figure 9: Security subsystem Component Diagram
PLEDGER

Handbook

21

2 PLEDGER Step by step

This step by step guide enables through specific steps the deployment and operation of all PLEDGER
components. It contains all the important requirements and instructions in order to deploy an
application through PLEDGER system, configure the intelligence modules (DSS, Benchmarking Suite
and App Profiler) and finally the configuration of continues monitoring of SLA and automatic penalties
operation.

2.1 Accessing the system

The objective of this section is to show the main system configuration is performed. The main
component involved is ConfService.

The main elements configured are:

1) users (service and infrastructure providers),
2) infrastructures and nodes,
3) Dapps.

As it is shown below, each step is executed by a different role.

2.1.1 An admin configures service providers and infrastructure provider’s users.

The Administrator is responsible for the creation of Pledger users and for the monitoring of
authentication activities. Figure 10 shows the user dashboard where the Administrator can assign roles
to users and enable/disable them. Figure 11 the list of Service provider users.

€< > C A NotSecure | 192.168.111.52:30928/admin/user-management =t * @ i

2 Apps [Google [S Home B Done [Ideas £ ToDo ES Working Reading List

Users

D+ Login ¥ Email 3 Profiles Created Date 3 Last Modified By 3 Last Modified Date 3

2 francesco o@example.org [RoLe P | 16/02/21 10:56 admin 16102121 10:56 @View #Edt XDslsls
3 admin admin@localhost system
4 root root@localhost [RoLE_apmiN | system @View #Edt XDelete

[ROLE_IP |

7 filippo filippo@example.org [RoLe se | 16/02/21 10:55 admin 16/02/21 10:55 @View #Edt XDelete
8 august august@example.org 16/02/21 10:56 admin 16102121 10:56
g verena verena@example.org | ROLE_sP | 16/02/21 10:56 admin 16/02/21 10:66
10 estela estela@example.org 16/02/21 10:56 admin 16/02/21 10:56
1 gabriele gabrigle@example.org [RoLe_sp | 16/02/21 10:56 admin 16/02/21 10:56 @View #Edt XDelete

Figure 10: ConfService: users with roles

G PLEDGER
Handbook

22

- o= Sendeshrover %

€ 5 C A NotSecure | 192.168.111.52:30928/service-provider o % B o :
i Apps [Google [Home [Done [Ideas [ToDo I Working & e

o ! . =
PLEDGER A Home & - = Providers ~

3 Service Provider

Service Providers

D+~ Name ¢ Organisation $ Preferences

1 filippo HOLO click View/Edit
2 august 12CAT click View/Edit
3 verena FILL click View/Edit
5 gabriele ENG click View/Edit

Showing 1 - 4 of 4 items.

pledger-project.eu

Figure 11: ConfService: definition of Pledger SP and IP users

2.1.2 Aninfrastructure provider access to the system to configure infrastructures.

The Infrastructure provides are responsible for the definition of the infrastructure and nodes in
Pledger, along with the required configuration to allow its monitoring. Figure 12 shows the monitoring
plugin configuration and Figure 13 shows the nodes with the hardware features automatically
discovered by Pledger.

- = Dimvcie bl

e A Not Secure | 192.168.111.562:30928/infrastructure o % » O -

i Apps [Google [Home [5 Done 5 Ideas 5 ToDo [5 Working | [E] Reading List

8 Infrastructures ~

Infrastructures

D Type Infrastructure

“ Name? s Endpoint $ Monitoring Plugin % Properties $ Total Resources $ Provider $

1 ENG_k8s K8S https://192.168.111.52:6443 {'kubeconfig": ‘/var/kubeconfig- {linfrastructure_type": {'cpu_millicore': francesco e ¢
eng/config’,'goldpinger_endpoint': ‘cloud"'infrastructure_location": '24000',memory_mb": View Edit D
"hitp://192.168.111.52:30080', monitoring_type": 'Vicenza} ‘39966’

‘metrics-server’}

Showing 1 - 1 of 1 items.
1

pledger-project.eu

Figure 12: ConfService: infrastructure with monitoring plugin and resources capacity

G PLEDGER
Handbook

23

- e L

& 5 C A NotSecure | 192.168.111.62:30928/node o v ®@ :

Apps [Google [Home [Done [Ideas B3 ToDo [Working Reading List

Nodes

(]

- Name & Ipaddress % Properties % Features %

1 kmaster 192.168.111.52 {location’: {'failure-domain.beta kubernetes.io/zone™:"nova","kubernetes.io/arch":"amdé4", "failure-

217.172.12.244 'ENG_premise’, domain.beta kubernetes.io/region™:"Vicenza","beta.kubernetes.io/arch":"amdé4","beta.kubernetes.iofinstance-type" "daa13172-bae6-49f9-b254-
‘flavor': fbe6859f2814","topology.kubernetes.io/region":"Vicenza","type":"cloud"”,"node. kubernetes.iofinstance-type"."daa13172-bae6-49f9-b254-
‘4_B_30, ubernetes io/hostname”:"kmaster”, "kubernetes io/os™ "linux" "topology. kubernetes.io/zone™ "nova”,"beta. kubernetes io/os)
‘node_type': role kubernetes.io/master”:", "node-role. kubernetes.io/control-plane":™
‘cloud’,
‘node_master":
"true’}

2 kworker1 192.168.111.53 {location": {'failure-domain beta kubemetes io/zone™"nova" “feature node kubernetes io/kernel-config NO_HZ_IDLE""true","feature node kubernetes io/syster
'ENG_premise’, o0s_release.|D""ubuntu”,"feature.node. kubernetes.iofcpu-cpuid AESNI""true" "feature.node kubernetes.io/system-os_release. VERSION_ID.major":
flavor': domain.beta. kubernetes.iofregion™"Vicenza","feature.node kubernetes.io/system-os_release. VERSION_|D.minor":"04" "feature.node.kubernetes.io
'4_8_30', cpuid. SSE4":"true","feature .node.kubemetes.iofkernel-version.minor”:"15","beta.kubernetes.iofinstance-type™ "daa13172-bae6-49f9-b254-
‘node_type": fbe6859f2814","topology kubernetes.io/region™:"Vicenza® "type™ "cloud","node.kubernetes iofinstance-type™ "daa13172-bae6-4919-b254-

‘cloud’} fhe68592814","kubernetes.io/hostname” "kworker1", "feature.node. kubernetes.io/kernel-version.full":"4.15.0-137-generic" "feature.node kubernetes

os_release. VERSION_|ID":"18.04" "topology.kubernetes.io/zone":"nova”,"beta kubernetes.io/os™:"linux","feature.node. kubernetes.io/cpu-

cpuid. HYPERVISOR™ "true","feature.node.kubernetes.io/pci-0300_1013.present":"true”, "kubernetes.io/arch™: "amd6é4","feature node.kubermnetes. io/k
version.revision":"0" "feature.node kubernetes.io/cpu-cpuid AVX":"true","beta.kubernetes.io/arch":"amd64","feature.node. kubernetes.io/cpu-

cpuid. VMX":"true","feature.node kubernetes.io/cpu-cpuid FMA3":"true","kubernetes io/os™ "linux"
cpuid. SSE42""true" "feature.node kubernetes.io/kernel-version.maj

feature.node kubernetes.io/cpu-

"."4" "location":"Vicenza","feature.node kubernetes.io/cpu-
cpuid. AVXSLOW™"true","feature.node. kubernetes.io/kernel-config. NO_HZ":"true" "feature.node kubernetes.io/cpu-cpuid AVX2™ "true"}

Figure 13: ConfService: nodes with feature auto-discovery features working to identify HW availability

2.1.3 A service provider access to the system to configure DApps and deployment
preferences

Service providers are responsible for the configuration of the DApps, their preferences about the
deployment options to filter and prioritize the DSS options. Figure 14 and Figure 15, show the
configuration of catalog apps and services.

- R x _

& > C A NotSecure | 192.168.111.52:30928/catalog-app o % » @ i

Apps B Google) Home [Done [Ideas E3J ToDo [Working [Reading List

(F

Catalog Apps

D~ Name % App Descriptor & Service Provider #
6 public-app click View/Edit @ View #Edit X Delete
3 risk-detector click View/Edit august @ View #Edit XD

Showing 1 - 2 of 2 items.

pledger-project.eu

Figure 14: ConfService: catalog apps

‘- PLEDGER
Handbook

24

- i

o G
i** Apps [Google ES Home [Sj Done E5 Ideas [ToDo [Working

<)
PLEDGER

N ————————— ittt

A Not Secure | 192.168.111.62:30928/app/3/view o % ® @

[E] Reading List

App 3

Name
risk-detector

Status
STOPPED

App Descriptor

app_name: risk-detector
services:
-id: 3
name: risk-detector
descriptor: risk-detector descriptor
type: KUBERNETES
-id: 2
name: tram-detector
descriptor: tram-detector descriptor
type: KUBERNETES
service_links:
- source: 3
destination: 2

service_name: risk-detector

Figure 15: ConfService: DApp composed by multiple services with K8S descriptor

Table 1 reports the demos on YouTube about the configuration done by administrators, infrastructure
and service provides.

Title Link

ConfService_#1: Admin configuring users

https://www.youtube.com/watch?v=SQ2uZOrXtDs

ConfService_#2: IP configuring infrastructures

https://www.youtube.com/watch?v=wR5Job68AXU

ConfService_#3: SP configuring Apps

https://www.youtube.com/watch?v=V609ihGZw2Q

Table 1: ConfService demos on YouTube

P ™28

https://www.youtube.com/watch?v=SQ2uZOrXtDs
https://www.youtube.com/watch?v=wR5Job68AXU
https://www.youtube.com/watch?v=V609jhGZw2Q

(7

25

2.2 Infrastructure benchmarking

In order to collect and analyse the performance of the infrastructures managed by a Pledger system,
the Benchmarking Suite service is needed. It is a service that runs in the background, reads the
configuration of the infrastructures from the ConfService, automatically execute the tests and analyse
the results and finally, publishes performance reports in the DSS. In the basic scenario, the interaction
with the user is minimal (section Error! Reference source not found.2.2.1) and all operations (sections
2.2.2, 2.2.3) are automated. However, it is possible to customize the behaviour of the Benchmarking
Suite (section 2.2.4) to have more precise and reliable results.

The Benchmarking Suite is an open-source software produced in Pledger and available on the Pledger
source code repository at: . The deployment of the
software has been extremely simplified thanks to the implementation of an Helm Chart that automates
the deployment and the configuration of the software in Kubernetes clusters. For most of the cases, it
is enough to download the chart package (or download its source code) and execute the “helm install”
command (Figure 16). It will automatically download and start all the required containers. A mandatory
configuration that must be provided through the “Helm values” mechanism is the list of the endpoints
for the ConfService, the DSS and the StreamHandler to allow the Benchmarking Suite to communicate
with the other Pledger components.

The Helm Chart source code and more detailed installation and configuration instructions are available
here:

git clane https://gitlab.con/pledger/public/benchaarking/benchsuite-heln 8& cd benchsuite-heln
Cloning into 'benchsuite-helm

warning: redirecting to https://gitlab.com/pledger/public/benchmarking/benchsuite-helm.git/
rTenote: Enumerating objects: 65, done.

Temote: Counting objects: 108% (650/650), done

remote: Compressing objects: 180% (33@/338), done

remote: Total 650 (delta 417), reused 519 (delta 317), pack-reused @

Receiving objects: 100% (650/658), 124.73 KiB | 2.19 MiB/s, done

Resolving deltas: 108% (417/417). done.

Aelease "besl® has been upgraded. Happy Helming!

NAME: bes1

LAST DEPLOYED: Wed Feb 8 12:46:13 2023

NAMESPACE: core

STATUS: deployed

REVISION: 413

NOTES:

The keycloak admin password is

> kubectl get secrets bes-keycloak-credentials -o jsonpath={ data adminPassword} | base6d --decode && echo *
NAME READY STATUS RESTARTS AGE
9-67991cBBdA-q7mct 11 Running [] 561d
9-6799fcBBAB-28219 171 Running [) 561d
authl-keycloak-@ 11 Running e 24s5d
authl-keycloak-controller-5d7bff6d-tp7hg 171 Running 5 2454
authl-postgresql-@ 11 Running 6 s83d

171 Running 478 478d

confservice-86c5897fhc- jhtac 11 Running 1 158d

confservice-mysql-65fchdcbeb-wdllb 11 Running 1 371d
confservicedss-nodered- 76c6d9578c - jBzng 171 Running [} 337d
e2co-app-bI8dcaTIS-clirh 11 Running 10 106d

Figure 16: Benchmarking Suite installation steps

The full admin and user documentation of the Benchmarking Suite is available online at:

In addition, two relevant videos have been published on the usage of the Benchmarking Suite:

PLEDGER
Handbook

https://gitlab.com/pledger/public/benchmarking
https://gitlab.com/pledger/public/benchmarking/benchsuite-helm
https://benchmarking-suite.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=1R6QYYjn6OM
https://www.youtube.com/watch?v=oJGZCa8SUUI

26

2.2.1 Enable benchmarking of a specific infrastructure.

To let the Benchmarking Suite start to collect performance data for an infrastructure, it is necessary to
enable the benchmarking of the infrastructure in the ConfService. This operation can be executed only
after an infrastructure has been added to the system (see section 2.1.2). This functionality is available
both for infrastructure providers and service providers. Infrastructure providers can activate
benchmarking on their infrastructure with the objectives of collecting data to assess and tune the
infrastructure or to offer performance data publicly to the service providers that might want to deploy
applications on their infrastructures. Service providers, on the other hand, can activate benchmarking
on the infrastructures they want to utilize to optimize the deployments of their applications .

To enable benchmarking, the user should connect to the ConfService and create a new “Project” entity
by selecting “Apps = Projects - Create a new Project” from the main navigation menu. In the form
(Figure 17), the user needs to specify the target infrastructure and the credentials to access the
resources and he/she needs to the “Enable Benchmarking” option. In addition, it is possible to specify
limits for the usage of resources and whether the calculated performance data can be public or must
remain private.

Create or edit a Project

Name

test-benchmarking

Group (eg. usecase name)

Properties (eg. {'namespace”: ‘default’, 'slice_name": 'myslice'})

{'namespace': "benchmarking'}

Quota Cpu (millicore - O for none)

900

Quota Mem (megabyte - O for none)

2000

Quota Disk (gigabyte - 0 for none)

Credentials (token) to launch Apps [for K8S, if Properties.secret_name is not configured, use the

Baseéd.decode of the SP's service account secret]

...............................
Enable Benchmark
Private Benchmark

Infrastructure

ENG-infra v

Service Provider

filippo v

Figure 17: ConfService Project Creation and benchmarking
enabling

(P P28

(7

27

Instead of creating a new “Project” specific for the benchmarking of the infrastructure, it is also
possible to enable benchmarking on the Project that the user previously created to deploy an
application. The first approach, however, has the advantage that it is possible to specify benchmarking-
specific credentials and configuration (e.g., restricting the resources usable or the privileges on the
infrastructure).

2.2.2 Benchmarking Suite is notified and starts the execution of benchmarking tests.

The Benchmarking Suite is notified when the user configuration changes in the ConfService. In the case
of the activation of benchmarking for a given infrastructure (see previous section), the notification
trigger an automatic re-configuration of the Benchmarking Suite that schedule the execution of a pre-
defined set of benchmarking tests in the infrastructure. The tests will start automatically using the
credentials and infrastructure parameters specified in the ConfService. The Benchmarking Suite will
collect the performance data measured on the infrastructure during the execution of tests and will
analyse this data (aggregating and comparing the data with previous data — if available — for the same
infrastructure). The diagram in Figure 18 shows the sequence of steps executed that triggered by the
enabling of the benchmarking by the user.

% ConfService Pledger DSS Benchsuite

enable benchmarking

I enable benchmarking

configure default
benchmarking
execute tests ‘/\/X)
metrics 1

e
analyse metrics

benchmarking reports

<t
' - ¥ StreamHandler

Figure 18: Benchmarking execution sequence diagram

It is worth to note that, once enabled, benchmarking of an infrastructure will stay on and tests will be
repeated on regular basis (once a week, by default). This guarantees to have more reliable and stable
performance data.

2.2.3 Report is shared with the Decision Support System (DSS).

As last step, in Figure 18, the Benchmarking Suite will send a report on the performance of the
infrastructure to the DSS in a machine-readable way. This is repeated every time a new test is executed.
The reports (shown in Figure 19) includes also a stability indicator that express how much this value
changed from the past. The data is later used by the DSS (together with the data from the AppProfiler)
to suggest the best infrastructure and node to deploy a given application.

PLEDGER
Handbook

(7

ConfService DSS .2

P
PLEDGER

Benchmark Reports
D$ Time «

231464 FebB, 2023, 11:21:35 AM
Feb B, 2023, 11:21:35 AM

231466 FebB, 2023, 11:21:35 AM
Feb 8, 2023, 11:21:35 AM

231468 FebB, 2023, 11:21:35 AM
231469 FebB,2023, 11:21:35 AM
231470 FebB, 2023, 11:21:35 AM
11471 Feb B, 2023, 11:21:35 AM
11472 FebB, 2023, 11:21:35 AM

Feb B, 2023, 11:21:35 AM

Benchmark &

phoronixsyshench-cpu-t8:0

phoronixx2é4:0

sysbench-cpuicpu-10k:0

sysbench-cpu:cpu-1k:0.1-b

sysbench-cpu:max10k-time0:0

sysbench-cpuzcpu-10kc0

sysbench-cpuzcpu-1k:0.1-b

sysbench-cpu:maxi0k-time0:0

sysbench-cpuicpu-10k:0

sysbench-cpuzcpu-1k:0.1-b

Metric ¢

performance_index

performance_index

performance_index

performance_index

performance_index

performance_index

performance_index

performance_index

performance_index

performance_index

Aggregation Interval ¢

2 weeks

aweeks

aweeks

2weeks

2weeks

2weeks

2 weeks

2 weeks

4weeks

4weeks

Mean Value ¢

1.208.61

774

1.179.008

115443

3.065.45

1.225.185

1.233.308

3.112.413

2590209

2540211

Stability ¢

o%

o%

98.7%

0%

96.5%

96.2%

98.7%

99.1%

Node @ Infrastructure &

nerve-host @ UC3-edge

hast @ UC3-e
pledger-1 @ ENG-infra
v ENG-infra
pledger-1 @ ENG-infra
P 5 EN a
pledger-2 @ ENGrinfra
pledger-2 @ ENGrinfra

pledger-3 @ ENG-infra

pledger-3 @ ENG-infra

Figure 19: Benchmarking Reports stored in the DSS

2.2.4 Manual tuning of benchmarking tests and analysis of results

.-
£ o
-

@view RGY
@view BGY
@view BG)
@ view BGY
@ view BG)
@view BG)

@view BG)

28

The Benchmarking Suite deployment also includes a web portal GUI that can be used in advanced use

cases to:

change the default list of benchmarking tests to execute and change their configuration

define new benchmarking tests

customize the scheduling (e.g., the execution frequency) of the tests

see raw and calculated performance metrics for each execution.

For a full description and guide of all functionalities, there is an online guide at: The full admin and user
is available online at:

documentation of the Benchmarking Suite

PLEDGER
Handbook

https://benchmarking-suite.readthedocs.io/en/latest/
https://benchmarking-suite.readthedocs.io/en/latest/

(7

29

2.3 Application profiling

The objective of this section is to show how the PLEDGER Application Profiler is used in order to
provide helpful information to the DSS about applications that are going to be deployed. To achieve
this, it communicates the prediction result to the ConfService. The app profiler is a standalone
application but in the PLEDGER ecosystem it communicates with the other PLEDGER components
through Kafka.

[1 Erdpork: Promethas | / G S
2 Gontziner |certifier: .g 00000)

* |NarelD, lzbel

Application
Profiing
r
|
S
3

1 Ervipont: Doder H
‘ . Deervon
docker 2 GortsirariD —— n

Figure 20: Application profiling diagram

2.3.1The App Profiler is automatically started when Application is deployed.

The App Profiler is constantly listening to the Kafka topic that sends all the deployments information.
This topic must be set in “Kafka flow”, “kafkajs-consumer node” as seen in Figure 21. Thus, every time
a new application is deployed, the Profiler will be triggered and the profiling will start automatically.
More specifically, the ConfService sends all the needed information so that the profiler can get access
to the low-level metrics of the newly deployed application. The configuration that is needed pertains
to the Kafka consumer and producer nodes and the corresponding paths to the trustore and keystore
files as depicted in Figure 22 and is described in the following url:

https://gitlab.com/pledger/public/app-profiler#tkafka

PLEDGER
Handbook

https://gitlab.com/pledger/public/app-profiler#kafka

30

Edit kafkajs-consumer node

£+ Properties L | =
¥ Mame

& Client kafkajs-client wi| o

% Group 1D

% Topic deployment_test

£ Advanced Options

Figure 21: kafkajs-consumer node properties

CA Cert fhome/pserverfDesktop/Creds-for-IC CS/kafka.client truststore. pem
Client Cert Ihome/pserver/Desktop/kafka client. keystore. pem
% Private Key | /home/pserver/Desktop/kafka client keystore pem

&, Passphiase | sssssssssssss

| Self Sign

Figure 22: kafkajs-consumer trustosre and keystore paths configuration

After calculating a profile prediction, the App Profiler informs the ConfService about the result, by
tagging the running service to which the prediction corresponds as seen in Figure 23

* @ rd X

Manage View Edit Delete

Figure 23: Application service tagged with sysbench prediction

G PLEDGER
Handbook

(7

31

2.3.2 Resource usage data is collected and analysed.

After the profiling process has been triggered, the collection of the required data starts. This operation
can be done either through the monitoring engine by querying the Prometheus database, or by
collecting the metrics in real time from the running container with the usage of the Docker API. The
default process is the first one and is performed automatically as already described in 2.3.1. However,
the App Profiler can also run independently of the PLEDGER system and by providing the exact location
of a running Docker container it can start collecting and analyzing its performance metrics. The
different options can be utilized through the App Profiler REST API as fully detailed described in its
documentation on GitLab in the following url:

A simple user interface is also available as seen in :

2.3.1 App Profiler composes a profile vector and classifies the application.

When the analysing of the collected data has finished, a profile vector has been created which is fed
to the profiler prediction model. This prediction will be transmitted automatically to the ConfService
but can also be inspected in the debug logs of the Node-RED platform. This can be seen in the last
debug message in Figure 24. In case the metrics have already been collected in the past and have been
stored in a csv file, a prediction can again be calculated by setting the appropriate path to the input
file as it is described in the following url:

PLEDGER
Handbook

https://gitlab.com/pledger/public/app-profiler
https://gitlab.com/pledger/public/app-profiler#profiler-ui
https://gitlab.com/pledger/public/app-profiler#random-forest-weka-classifier

(7

32

% debug i &% B

(b

121/2023, 12:57:51 AM node: 367461a5.c8b966

b : msg.payload : Object
»{ code: 0 }

AM node: d6020d8e.534b4

[offec
*{ msgid: "bafca49e.bfédf8",
topic: object, type: "System",
payload: "", rc: object }

»{ msgid: “"bafca49e.bfedf8",
topic: object, type: "System", rc:
object, paylead: "Attribute
mappings:~-Model att.." . }

U212023, 12:57:51 AW node: ef8dalfds.desor

msg.payload : string{75]

“inst#,actual,predicted,error,pred
ictione1,1:?,3:phoronix system hin
t,.0.3u"

1/21/2023, 12:57:51 AM node: 59bedad2.25822

[obiect Chiect!

meg : Objec
1 =g . voes

»{ msgid: "bafcad4%e.bfedf8",
topic: object, type: "System", rc:
object, paylead: object .. }
V21/2023, 12:57:51 AM node: di32d8ec.Oaade
benchmark_name : msg.payload - string{20]
“phoronix system hint"

1/21/2023, 12:57:51 AM nodde: 4894fa2b.co3dec

Figure 24: Node-RED debug console

2.3.2 Classification results are shared with the DSS.

When the classification has finished, the result must be shared with the DSS. To achieve this, the
prediction is automatically transmitted to the ConfService . This results in tagging the corresponding
service with the actual prediction as depicted in Figure 23. Again, the appropriate Kafka topic must be
set in the producer node. From there on, the DSS can make use of the information of the prediction
whenever it is needed in order to support its deployment decisions.

PLEDGER
Handbook

(7

33

2.4 Provider selection

Infrastructure providers for the deployment of new applications are selected based on their past
behaviour. Therefore, the T&R engine ranks the available providers taking into account the individual
Trust that has been developed through interactions with a specific client, but also the community
Reputation which takes into account the experiences of all clients with the specific provider. The
results of this analysis are presented to the client so that he can choose the best available provider.

2.4.1 T&R engine constantly analyses the SLA violations information for each of the
infrastructure providers.

The T&R engine listens to the Kafka topic that communicates all the new SLA contracts as well as the
information about every SLA violation for active SLA contracts that occurs. All this knowledge is stored
in a database and the Trust and Reputation indexes are constantly updated based on it. The engine is
implemented in node-RED flows, thus the appropriate Kafka topic must be set in the corresponding
kafkajs-consumer node as depicted in Figure 25

Edit kafkajs-consumer node

#+ Properties O =
® Name sla_contracts

% Client kafkajs-client vl &#

® Group ID

% Topic sla_contracts_test

& Advanced Options

Figure 25: kafkajs-consumer node properties

PLEDGER
Handbook

34

2.4.2 It ranks the available provides and presents them through a user interface to the
client so that he can select the most suitable one for deploying a specific
application.

By accessing the T&R engine Ul in the following url:

{Node-RED address}/ui

the user can select to be presented either with the top 10 providers ranked by reputation, or to ask
for the Trust or Reputation indexes for specific clients and providers. This is shown in Figure 26, Figure
27 and Figure 28

localhost: 1880/t

TOP 10 PROVIDERS BY REPUTATION

TRUST

REPUTATION

Figure 26: Basic T&R menu

Select Client and Provider

Client

Provider

SUBMIT

Figure 27: Trust querying form

G PLEDGER
Handbook

(7

35

select Provider

Provider

SUBMIT

Figure 28: Reputation querying form

The form of the calculated results can be seen in Figure 29 and Figure 30

localhost:1¢

Top 10 Providers

Figure 29: Top 10 providers by reputation

PLEDGER
Handbook

36

localhost:1880/ui/#

0.79612

Reputation

0.79612

Interactions

Figure 30: Client-provider trust and reputation indexes

(@ preoeer

37

2.5 Configuring QoS

The objective of this section is to show how SLA are configured in the system. The components
involved are the ConfService and the SLA Lite.

2.5.1 A service provider states the guarantees for an application.

Figure 31, Figure 32, Figure 33 and Figure 34 show the configuration of the SLA and Guarantees
happening on the ConfService Ul which, in turn, sends notifications to the SLA Lite to sync configuration
data. First, the SLA has to be created. During the creation the SLA is associated to a service. Then the
guarantees terms must be created. These guarantee terms have to be associated to an existing SLA.

& > C A NotSecure | 192.168.111.52:30928/sla - % @

i Apps (3 Google [Home [Done (5 Ideas [5 ToDo E3 Working Reading List

(3

Sias

ID* Name#% Type® Creation 3 Expiration $ Service $ Infrastructure Provider $ Service Provider ¥
1 SP[august] - IP[estela] INT May 20, 2021, 1:52:32 PM risk-detector estela august @ View #Edit XDelete
2 SPlaugust] - IP[francesco] EXT May 20, 2021, 2:05:02 PM risk-detector francesco august

Showing 1 - 2 of 2 items.
1

pledger-project.eu

Figure 31: ConfService: SLA definition

PLEDCER

Create or edit a SLA

43
lame
risk-detector - availability

ignore v

august v

Figure 32: ConfService: SLA definition details

G PLEDGER
Handbook

38

m Lo x _

& 5 A NotSecure | 192.168.111.62:30928/guarantee o % * @

Apps B3 Google B Home B Done [S ldeas B3 ToDo B Working | B Reading List

~ iEApps ~

Guarantees C

1] Threshold Ti Ti Threshold Threshold
- Name % Constraint 3 Warning % Mild Serious % Severe ¥ Catastrophic Sla %
1 responseTime responseTime <= >90 >100 >1000 >10000 >100000 SP[august] -

100 IP[estela]
5 latency latency <= 30 =27 =30 =300 >3000 >30000 SP[august] -

IP[estela]

2 responseTime responseTime <= >180 >200 >2000 >20000 >200000 SP[august] -

200 IP[francesco)]
6 latency latency <= 40 >36 >40 =400 =4000 >40000 SPlaugust] -

IP[francesco]

Showing 1 - 4 of 4 items.

aK |« » | ww

pledger-project.eu

Figure 33: ConfService: Guarantees definition

Create or edit a Guarantee

40
lame

risk-detector - availability

[avg_over_time{up%7Bjob="risk-detector-sve %7D%5B24h%5D)] > 0.99

Figure 34: ConfService: Guarantees definition details

‘- PLEDGER
Handbook

(7

39

2.5.2 A SLA template, including metrics, thresholds and severity level is created.

After the SLA and guarantees have been created in the ConfService application, the SLA Framework
gets a message from Kafka (Figure 35Error! Reference source not found.).

Topic: configuration

Partitions Consumer Groups Configs

t) v Partition: (All) ~ Timestamp: ~ Search: ~ Offsets:

Date

2022-12-12T10:12:43.1417

2022-12-12T10:52:24.15472

Figure 35: Kafka: SLA creation message

After reading this message the SLA Framework creates the correspondent SLA, and starts the periodic
assessment of it. Next figure (Figure 36Error! Reference source not found.) shows the SLA created and
stored by the SLA Lite.

PLEDGER
Handbook

=

40

Feguro 192.168.70.13:3

Parameters

No parameters

“ Clear

Responses

Curl

curl -X GET “Ihttp://192.168.70.13:32000/agreenent accept: *+/*"

Request URL

ht 000/ agreements

Server response

Code Details

e Response body

‘name sk-detector - availability”,
"state’ 'started”,
“assessment”: {
*first_execution'
"last_execution”
"guarantees”: {
E 1

“last_values
time(upk7Bjob="ri “tor-svc "K7DX5B24)
avg_over_time(upX7Bjob="risk-detector-svc

2022-12-12T: 37"

time (up%7Bjob="risk-detector-svc 57DX5824h¥5D){172.16.10. 36: 324
avg_over_tine(upk7Bjob="risk-detector-svc'X7DX5B24h%50){172.16.

22-12-12T16:26: 437"

‘constraint”
“importance”
r
{

Figure 36: SLA Framework Swagger Ul: SLA

2.5.3 The template is used by the DSS to receive SLA violations

Whenever an SLA violation is received, the DSS stores and reports them in the Ul. These are used by
the optimization algorithm, later explained in the following sections. Figure 37 shows an example of
SLA violation received by the DSS and shown in its Ul.

PLEDGER
Handbook

41

Assessment [EVALUATOR] [EvaluateGuarante] Evaluating Guarantee [46] of agreement with ID: 4
Assessment > Moni HMonitoring Enging~{Retrieve] Retrieving met from Monitoring Engine.d g /T 68.70. /apifv ctor type: default]

Monitoring Engine [Retrieve] Checking [item.Var.Name-avg_over_time(up%7Bjol
query?query=avg_over_time(up%78jol datec %5824h%5D) &app1d 143
nitoring Engine Returning reslilt: g over (up? ctor % ver_ti %7Bjob="risk-detector-
7D%5824h%5D) {172.16.10 }. Value
sessmsht [EvaluateGuarantee] Total v g

sessment
> Assessment alse
sessment [EVALUATOR] 1 iolati Marning Constraint
sessment iolati 1d Constrain
> Assessment
Framework > Assessment vlev kviolationLev N vere C i [n 600000 < ©
Framework > Assessment vlev iolationLev Name : C rai .95} [0.800000
Framework > Assessment c
Franework sessment 1 1 C [avg_over_time(up%7Bjob="risk-detector-s
isk-detector 2 4l 3 1
> assessment ifier > Kafka [N"‘, wioTations] Violation of ag
assessment ifier > stk yviolations] Failed guarante
> assessment i > k iolations] Failed guarantee 40 of sgreement 4
> assessment > notifier > K 5 c ing / sendig message [top
> Assessment [EVALUATOR] [storeviolations] Farl
SLA-Framework > Assessment [EVALUATOR] [storeViolations] Failed guarantee 48 of agreement 4 202 :30:43 +8000 UTC
[Createviolation] Adding agreement to mongodb reposito
[Createviolation] Agreenent: &model.Violation{Id: nt (annfnhh uuguntr7g16708415: r d , Guarantee:"48", Datetime:time.Date(time.December, 12, 10
.Local), Constraint:"[avg_over_ti job="risk-detector 370! 6.99", Values: [|model.MetricValue{nodel . HetricValue{Key: "a _time(up%7Bjob="risk-detector-svc' %7D%5B24h%ED) {1
000}", Value ime:time. ime. r ime.Local)}}, Importancelame:"Catastrophi 4, App: , Description:™"
veAgreements(). [4 agreements to

Figure 37: SLA Framework logs: SLA violation

Topic: sla_violation

Partitions Consumer Groups

Timestamp: ~ Search: ~ Offsets: ~

Date

2022-12-12T1

"datetime”
H
1,
importanceName!
importance”: 4,
"appID”: "43"

il

Figure 38: Kafka: SLA violation message

o= Sl icione X _

“« C A Not Secure | 192.168.111.52:30928/sla-violation * » @

i Apps B3 Google) Home [Done [Ideas ESJ ToDo B Working [Reading List

DSS vi40 = Tools ~ B Providers v~ B Infrastructures ~ EBApps v IEDSS ~

)
PLEDGER

Sla Violations

ID* Timestamp $ Violation Name ¢ Severity Type ¢ Description $ Checked$ Sla$

Jun 3, 2021, 1:14:27 PM responseTime Serious This is a guarantee violation for risk-detector on i2cat infrastructure true august] - IP[est

Showing 1 - 1 of 1 items

Figure 39: DSS: SLA violations received

f- PLEDGER
Handbook

(7

42

2.6 Deployment configuration

The objective of this section is to show how the DSS deployment configuration works and is used to
enable the optimization algorithms. The components involved are:

e ConfService,

e DSS,

e Orchestrator,

e Benchmarking+AppProfiler,
e MonitoringEngine,

e StreamHandler

StreamHandler bus
using Kafka protocel

Orchestrator I k > App

[

ConfService

Y

Dss

~

A

Saa$ Provider

Benchmarking +
AppPrafiler

< Manitoring
SLA Manager [« Engine

A

Figure 40: DSS main interactions with core components.

2.6.1 DSS analyses all the information provided and develops the most suitable
deployment scheme.

Figure 41 shows the configuration of deployment constraints from the Service provider and Figure 42
the resulting prioritized deployment options that will be used by the DSS. This way, the DSS takes into
consideration the service provider preferences about the infrastructures and nodes where to
instantiate DApps, while keeping additional space for optimization within the remaining equivalent
options using the optimization algorithm configured, as shown in Figure 43.

PLEDGER
Handbook

- # ServiceConstraints

s G A Not Secure | 192.168.111.52:30928/service-constraint

Apps £ Google) Home [Done [5 ldeas E5 ToDo [Working

43

x_

o % » @ i

. [E] Reading List

Service Constraints

D= Name ¢

1 node_master
2 location

3 node_master
4 location

6 node_type

5 location

7 node_type

pledger-project.eu

Category %

FORBIDDEN

MANDATORY

FORBIDDEN

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

Value %

true

I2CAT_premise

true

I2CAT_premise

edge

I2CAT_premise

cloud

Value Type ¢

text

text

text

text

text

text

text

Showing 1 -7 of 7 items.

a

Priority %

Service 3

tram-detector @ View ¢ Edit X Delete
tram-detector @View # Edit XDelete
risk-detector @ View # Edit X Delete
risk-detector @ View ¢ Edit X Delete
risk-detector @View #Edt XD
risk-detector @View ¢ Edit X Delele
risk-detector @View #Edit XDelete

Figure 41: DSS: ServiceConstraints, setup by the SP, to express deployment preferences

m e (H

& = (2 A NotSecure | 192.168.111.562:30928/guarantee

Apps S Google BN Home B Done [ldeas ES ToDo

B3 Working

x_

- » @ :

| B Reading List

s v EApps v

Guarantees
D
- Name + Constraint +
1 responseTime responseTime <=
100
5 latency latency <= 30

2 responseTime responseTime <=
200

6 latency latency <= 40

pledger-project.eu

Threshold T T Threshold
‘Warning ¥ Mild = Serious ¥ Severe ¥
>90 >100 >1000 >10000
>27 >30 >300 >3000
>180 >200 >2000 >20000
>36 >40 >400 >4000

Showing 1 - 4 of 4 items.

e

+ Create a new Guarantee

Threshold

Catastrophic % Slas

>100000 SP[august] -
IP[estela]

>30000 SP[august] -
|P[estela]

>200000 SP[august] -
IP[francesco]

>40000 SP[august] -

IP[francesco)]

Figure 42: DSS deployment options for a specific App based on the ServiceConstraints

‘- PLEDGER
Handbook

=

44

& c 192.168.70.13.

B3 Google E5 Home [5] Done E5 Ideas E5 ToDo B3 Working B NOW

ConfService DSS vz«

<)
PLEDGER

Create or edit a Service Optimisation
ID

1
Name
opt_pledgar-workspace
Service

pledgar-workspace

Optimisation

v scaling v
offloading
resources
latency
resources_latency

latency._faredge
resources_latency_faredge

Figure 43: DSS optimisation algorithm configuration

Table 2 reports the DSS deployment options demo on PLEDGER YouTube channel.

Title Link

ConfService_#4: SP setting App deployment
options https://www.youtube.com/watch?v=D7LZbcHfiXk

DSS_#1: DSS using deployment options to
privilege edge over cloud and scaling down https://www.youtube.com/watch?v=glecLrZAoNw

Table 2: DSS deployment options demo

2.6.2 DSS computes the best node and notifies the orchestrator to start the deployment
of the application

Depending on the optimisation algorithm configured, the DSS computes the action to take according
to the resources available, the node-to-node latency, etc. from the MonitoringEngine, as well as the
Becnhmarking and AppProfiler data, the SLA violations, then communicates with the Orchestrator.

The optimisation algorithms available and their scenarios are described in the DSS documentation on
Gitlab® and a comparison is reported in Figure 44.

% https://gitlab.com/pledger/public/confservicedss/-/blob/master/doc/optimisations/optimisation_scenarios.md

PLEDGER
Handbook

https://www.youtube.com/watch?v=D7LZbcHfiXk
https://www.youtube.com/watch?v=gJecLrZAoNw

45

how many tiers is the |are edge resources |use SLA violations as is edge energy |custom
B?st izfi"r;::ﬁf:; 23St | rasiricture mads of [managed by the DS [fedback to/ach 'fa::gfa?"'w =2y ';.r'l?::;w consumption |optimisati ithm
(2-3)7 exclusively? agreed QoS? critical? needed?
similar to KBS autoscaling with:
- deployment options to leverage on
HW diversity
- resource availability monitoring on
the edge nodes
r edge-cloud yes yes yes no no no - SLA vialations used as feedback
simplified version of “resources” where
DS does not manage all edge
resources. On the edge higher priority
services needs to scale if necessary and
offloading edge-cloud no yes yes no no no the DSS5 needs to manage the rest
simplified version of "resources” where
DSS does not manage all edge
resources. On the edge higher priority
services needs to scale if necessary and
scaling edge-cloud no yes yes no no no the DSS needs to manage the rest
latency edge-cloud yes no no ves no no ECODA
T _latency edge-cloud yes yes yes yes no no ECODA + "resources”
latency_faredge faredge-edge-cloud yes no no yes no no TTODA
resources_latency_faredge |faredge-edge-cloud ves yes yes yes no no TTODA + "resources”
EA-ECODA: ECODA + "resources” +
r _latency_energy |edge-cloud yes yes yes yes yes no energy optimisation algorithm
call to external webhook URL for
webhook yes custom optimisation

Figure 44: DSS optimisation algorithm scenarios

‘- PLEDGER
Handbook

(7

46

2.7 Generating smart contracts

After the SLA template is created from the corresponding system Ul (2.5.2), the blockchain framework
receives the data. The Pledger DLT hosts the SLASC Bridge core component that is responsible for the
smart contract generation. The entire procedure along with the penalties described later in 2.13
unfolds within a private and confidential blockchain environment of the network. In the following
figures, the sequence of the data flow is depicted with each action described. In simple terms, the main
actions that occur are as follows:

° SLA configuration or creation
. Smart contract equivalent creation, deployment, and submission on the DLT
. Smart contract accessibility on the DLT

2.7.10nce the SLA template is created, the blockchain framework is notified.

Once SLA template is created in the corresponding system Ul, the SLA application sends the data with
a secure way to the blockchain network. In the meantime, the blockchain components are constantly
receiving notifications as depicted in Figure 45.

<containers>

Figure 45: Blockchain receiving notifications.

2.7.2 SLA-SC gathers the SLA guarantees and converts them into a smart contract between
the service provider and the infrastructure provider.

SLASC Bridge initiates the process of SLA to Smart Contract by completing the following workflow:
e creating the smart contract equivalent
e deploying the smart contract on the blockchain

o submitting the SLA logic on the ledger

PLEDGER
Handbook

47

The accompanying figures showcase each stage of the workflow from the blockchain point of view.
During the entire process, the user accounts are identified if they exist or newly created otherwise.

7-kxkf5:main) [tail]

Package ID: sla-version 193:45060acbé e 2467e895d324041d6a6b180bUFO594529d8e7147Ff, Label: sla-version-2-193
2022/12/05 L @ Chaincode ID: sla-versi - F9532bf89f6dfda3bddd £09357d54b247d5f760e602b 922e3709%eeae
/ @ Deploying Chaincode
02bd32922e3709%eeae

nt “orgipeerl-

ce "orgdpeerl-ccaas
ployment
ccaas-sla-
vice " caas-sla-versio
0 Deployed Chaincodes
Activating Chaincodes
Installing chaincodes
[cli.lifecycle.chaincode] Installed remotely ponse:<status:200 payload:"\nRsla-versio
[cli.lifecycle.chaincode] Chaincode code package identifier: sla-version-2-194:04f95
[cli.lifecycle.chaincode] Installed remotely: response:<status:200 payload:"\nRsla-v
[cli.lifecycle.chaincode] Chaincode code package identifier: sla-version-2-194:04f9532bf8
Installed chaincodes
Approving chaincodes
[chaincodeCmd] -> txid [2627¢cb10fa79¢c23bd74cdb29bdd28b8a7639b5e2812b32c7b3e958cea2d75e2] commithed wit
2022/12/05 22:65 Approved chaincodes
"approvals":
"OrguMSP" :

3
}

2/05 22:05:32 Committing chaincod
5 [chaincodeCnd] -> txid [29f78102fcb65228fU2bUbUf2cedfIechfedfT7de6bOc3yled5e013e85477c86] committed wit

Figure 46: Blockchain creates the smart contract

main)[tail

30 Installed chaincodes
30 Approving chaincod

[chaincodeCnd] -> txid [a627cb16fa79c23bd74cdb29bdd28b8a7639b5e2812b32¢7b3e958cea2d75e2] conmitted wit
32 Approved chaincodes

"approvals”: {
"OrguMsp”

}
}
2022/12/05 22:05 Committing chaincodes

[chaincodeCmd] i 3 42byeuf2cedf9ecbfedf7de6b0c3ule05e013e85477cF86] committed wit

2022/12/05 22 Committed chaincodes
2022/12/65 22 Activated Chaincod

Orgl-Peerl
{"info":{"title":"undefined", "version":"latest"}, "contracts":{"SmartContract”:{"info":{"title":"SmartContract”, "version":"latest"},"name" :"SmartContract

Org-P
{"info": {"title" rsion”:"latest"}," { {"info": {"title":"SmartContract","version”:"latest"},"name" : "SmartContract
2022/12/05 22:05 - tion " e conr v with the le L3
2022/12/05
2022/12/05

and an initial bal

ubmit
Submit

Figure 47: Blockchain deploys and submits the smart contract

2.7.3 Smart contract is accessible in a readable manner by the two parties.

The smart contract equivalent is accessible to the dedicated users that are participating on the created
SLA. The contractual terms are submitted on the blockchain, while the new smart contract is triggered
in sync with the necessary operations that pertain to the SLA configuration. The automation of the
refunding mechanisms are explained later in 2.13.

f- PLEDGER
Handbook

ERLEDGER

(PLORER

Chaincode Name

sla-version-2-193

1 Sla-version-2-194

48

DASHBOARD NETWORK BLOCKS TRANSACTIONS CHANNELS ¢a20 - ‘o ‘
Channel Name Path Transaction Count Version
sla2.0 - 4 1
sla2.0 - 64 1

Hyperledger Explorer Client Version: 1.1.8 Fabric Compalibility: v2.3v1.4

Figure 48: Smart contract accessible by parties

G PLEDGER
Handbook

49

2.8 Application deployment

2.8.1The orchestrator receives the notification from the DSS for deploying an application.

The E2CO application reads the deploying message from Kafka (Figure 49Error! Reference source not
found.) and connects to the required infrastructure to deploy there the application.

Partitions Consumer Groups Configs

Timestamp:~ Search: ~ Offsets: ~

2022-12-12T11:27:06.556Z

I
1
“target_infra_id":
“placeholders™:
I

L
"placeholder™: "PLACEHOLDER_REPLICAS”,
“value™: "1"

PLACEHOLDER_MEMORY_MB™,

al
2
3
4
5
6
7
8
9

"placeholder”:
"value™: “lapt:

HOLDER_CPU_MILLICORE",

3
"prometheus_endpoint™: "htt

Figure 49: Kafka: App deployment message

G PLEDGER
Handbook

50

2.8.2 Orchestrator deploys the application in the selected node and starts it.

The status of the application is shown in the ConfService application (Figure 50).

ConfService DSS vz 7

]
PLEDGER

App 3

Name

risk-detector

Management Type
DELEGATED

App Descriptor

app_name: risk-detector

service_name: risk-detector -
service twpe: KUBERMETES

Service Provider

Figure 50: ConfService: App running

2.8.3 The Monitoring Engine starts automatically to monitor the application health.

Once the application has been successfully deployed and the SLA created, the SLA Framework starts
the periodic evaluation of the existing SLAs (Figure 37). To do that it connects to the Monitoring Engine,
which is the component responsible for gathering the metrics values from the different infrastructures.

G PLEDGER
Handbook

(7

51

2.9 E2Eslicing

The objective of this section is to show how the deployment of end-to-end slices is performed in
Pledger. In a nutshell, the deployment of network slices consists of the reservation and isolation of
compute, network, and radio elements. From the infrastructure provider’s perspective, network slicing
allows for the partitioning of a physical infrastructure; each partition or network slice can then be
rented to an interested party or service provider. Network slices can be created under the service
provider’s request with designated capacities, to cater for the QoS requirements of the specific
services to be deployed.

After the network slice is created and activated by the infrastructure provider, services (including
network services) can then be deployed over the end-to-end network slice.

Note that Pledger supports the deployment of two types of network slices that vary in their
composition depending on the radio access technology of choice:

- 5G network slices, where the underlying compute infrastructure is based on Openstack and
one single, isolated radio cell is allocated to each network slice.

- Cloud native network slices, where the underlying compute infrastructure is based on
Kubernetes, and the radio elements are based on the IEEE 802.11p standard.

In both types of slices, in addition to providing the desired radio access technology, a slice request also
includes the desired computing resources to host the application and services to be deployed by
the service provider.

2.9.1The infrastructure provider starts the network slice creation process using the
ConfService.

In those cases where a network slice needs to be in place, the infrastructure administrator is
responsible for its deployment. Note that, prior to the slice deployment phase, an agreement must
exist between the infrastructure and service providers regarding the requirements of the network slice
in terms of resources and location of elements comprising the slice. After such an agreement has been
reached, Pledger is used for the deployment of the network slice. Figure 51 shows the user dashboard
from which the infrastructure administrator can set up the relevant slice parameters. Figure 52 shows
the ConfService’s Projects dashboard, from which network slices can be managed (i.e., configured,
provisioned and unprovisioned).

PLEDGER
Handbook

(7

52

Create or edit a Project

D

27

Name

test@I2CAT slice-30-5G

Group (eg. usecase name)

ucz

Properties (eg. {namespace’: ‘default, 'slice_name" ‘myslice’})

{'name_slice": ‘pledger-demo-5g-slice’, ‘user_id': '62f39b8e88c2c8000ab3icad’, ‘compute_id": '62f39b988c2c8000bae3848", ‘physical_network_id": '62f39bd788c2c8000bae384h’,

Quota Cpu (millicore - 0 for none)

2

Quota Mem (megabyte - 0 for none)

4096

Quota Disk (gigabyte - O for none)

100

Credentials (token) to launch Apps [for K8S, if Properties.secret_name is not configured, use the Base64.decode of the SP's service account secret]

Enable Benchmark [J
Private Benchmark [J

Infrastructure
UC2-infra-30-5G
Service Provider

adrian

[© cancer | Bsae |
Figure 51: End-to-end slice configuration from the ConfService
7 test@I2CAT ucz {name_slice’: ‘pledger-demo-5g-siice’, ‘user_|d" '62f30bBeB8c2c8000ab3fcad’ 2 4006 100 false false ucz adrian * * ® 4 x
slice-30-5G ‘"compute_id': '62f39b2188c2cB0(‘physical_network_id’ infra-30-5G Unprovision Provision View Edit Deiete

*62139b0788C2cB000baR3BAD. structure_id
'62f30befBAC2cAIN093BA7C ‘pledger-Sq, password': pledger
“description’: ‘Pledger compute node in Openstack}

Figure 52: End-to-end slice management from the ConfService

After the infrastructure administrator initiates the provisioning of the network slice, the ConfService
parses the configuration parameters to the Orchestrator, which in turn sends the required flow of API
calls to SOE’s northbound interface.

2.9.2 The SOE Framework and the RAN Controller execute the required actions for the
creation and activation of the network slice.

The SOE Framework is responsible for the deployment and activation of network slices. Network slice
creation and activation requests are sent to the SOE Framework by the Orchestrator, as a set of API
calls, in order to execute the following actions (in the presented order):

- Compute, network, and radio partitions (i.e., chunks) creation. The SOE Framework receives
one API call from the Orchestrator for the creation of each chunk, and it returns an
acknowledgement to the Orchestrator after the successful execution of each action. Note that
the RAN Controller is the responsible entity for the creation of radio chunks and, therefore,
there exists an interaction between the SOE Framework and the RAN Controller during the
radio chunk creation phase.

PLEDGER
Handbook

(7

53

- Creation of the network slice as a composition of compute, network, and radio chunks. The
SOE Framework receives one single APl call from the Orchestrator for the creation of the
network slice, and it returns an acknowledgement to the Orchestrator after the network slice
creation phase is completed.

- Network slice activation, including the deployment of required software elements (i.e., the 5G
core for 5G network slices, or a V2X stack for network slices with IEEE 802.11p radio elements.)
The SOE Framework receives one single API call from the Orchestrator for the activation of the
network slice, and it returns an acknowledgement to the Orchestrator after the network slice
activation phase is completed.

2.9.3 Once the slice is activated, the service provider can instantiate a (network) service
through the ConfService.

Service providers can instantiate services, as well as network services, over a network slice. In both
cases, the deployment is triggered by the service provider from the ConfService dashboard. However,
the instantiation of network services and non-network services require different deployment flows.

On one hand, network services are instantiated over a network slice through SOE, which in turn
interacts with OSM. In this manner, network services in Pledger are aligned with ETSI NFV standards.
On the other hand, non-network services (such as the risk detection and notification service in UC2)
are directly deployed over the underlying compute infrastructure. Therefore, prior to deployment, the
service provider must manually select the target infrastructure, be it SOE-based (for the deployment
of network services) or Kubernetes-based (for the deployment of other services); Figure 53 shows the
App Deployment Options menu from the ConfService, where the service provider can manually enter
the target infrastructure for their service.

App Deployment Options 3

Ranked options (lower values are better)
app: risk-detector

service: risk-detector

-ranking 1:

e deployed on

-- node#31 'kubeedge’ [edge] on infrastructure "UC2-infra-30" with id:8

App
risk-detector

Figure 53: App deployment options

PLEDGER
Handbook

54

After the target infrastructure has been selected, the service provider needs to execute a two-step
process in order to deploy their application. These two steps are common for the deployment of both
network and other (non-network) services, and can be summarized as follows:

- Service creation and configuration: during this first step, the service provider inputs the service
descriptor and relevant configuration parameters on the ConfService’s Service dashboard, as
shown in Figure 54.

- Application deployment: during this second step, the service provider manages the start and
stop of an application composed of microservices through the ConfService’s App dashboard,
as represented in Figure 55.

The flow associated to the deployment of network services is as follows:

- After the service provider requests the deployment of the network service through the
ConfService, a request is sent to the Orchestrator, which in turn sends an API call to the SOE
Framework in order to request the deployment of the network service.

- The SOE Framework parses the deployment request, with relevant parameters to OSM, which
encapsulates the service into a ETSI NFV-compliant network service. OSM then deploys the
network service over the underlying Kubernetes infrastructure.

The flow associated to the deployment of other (non-network) services is as follows:

- Afterthe service provider requests the deployment of the application through the ConfService,
a request is sent to the Orchestrator, which communicates directly with the underlying
Kubernetes infrastructure, and the application is then deployed.

Create or edit a Service

D

3

Name

risk-detector

Profile

cpu-intensive

Priority (1 is the lowest)

1

Initial Configuration

"max_memory_mb":"500","min_memory_mb":"180","min_cpu_millicore™"150","scaling":"vertical","initial_memory_mb":"256","initial_cpu_millicore":"180","max_cpu_millicore™:"500","replicas™"1"}

Runtime Configuration

{"replicas™"1","namespace":"pledger-demo-v2x-slice”,"memory_mb":"180","infrastructure_id™:"8","nodes_selected":"kubeedge”,"cpu_millicore":"150"}

Deploy Type

KUBERNETES A

Deploy Descriptor

apiVersion: appsivl
kind: Deployment
metadata.
labels
app: risk-detector
name: risk-detector
namespace: PLACEHOLDER_NAMESPACE

Figure 54: Service creation and configuration

(PLEDGER
a Handbook

Manage an App

D

3

Name

risk-detector

Management Type

DELEGATED

Status

RUNNING

Action

STOP ...
FORCE_STOP ...

Figure 55: Application management

G PLEDGER
Handbook

(7

56

2.10 Security configurations

2.10.1 An infrastructure provider can use PLEDGER IDPS for managing virtualized

intrusion detection

In the context of Pledger project, a distributed cybersecurity network streaming platform has been
implemented aiming to offer real time intrusion detection (IDS) and network security monitoring
(NSM). The business objectives that drive this solution are to:

Increase security, privacy and trust from the Edge to the Cloud
Detect network threats and security anomalies and provide prompt alerts
Provide sophisticated data analytics of the network traffic through a user-friendly Ul

The architecture of the cybersecurity solution can be found in the following figure:

Web Client *

i A
\ 1
1 1
1 1
1 1
1 1
1 1
1 1
4 i
1 1

1 .
i — | [Kibana
| ORE
1 [| 1
1 T ! Visualization
! Firewall)
i ! i
I B oonooooo
1 ' !
| I

I
| s || jiin
{ SURICATA i ! Beats| |d@dddEE | wm Logstash| | == Elasticsearch
: Intrusion 1 Kafk Kafk
| petecion | 1] vt Hin e
2 System : Producer Consumer
I
\\ ‘/'

"""""" handler

/" osssvssssss)
[Tenant N B

Figure 56: Distributed Cybersecurity platform architecture.

Our solution consists of the following software components:

Suricata, which is a very popular open source, mature, fast, multi-threaded and robust
network threat detection engine. The Suricata engine is capable of real time intrusion
detection (IDS), inline intrusion prevention (IPS), network security monitoring (NSM) and
offline log (in pcap format) processing. It inspects the network traffic using a powerful
signature language to match on known threats, policy violations and malicious behavior.
Moreover, it has a powerful Lua scripting support for detection of complex threats. With
standard input and output formats like YAML and JSON integration with tools like existing
SIEMs, Splunk, Logstash/Elasticsearch, Kibana and other frameworks, become effortless.
Suricata constitutes the heart of the Cybersecurity solution as it acts as an IDS and NSM
application.

Filebeat, which is part of the ELK stack, belongs to Beats collection of lightweight data shippers
for forwarding and centralizing log data in a distributed environment. Installed as an agent on
your servers, Filebeat monitors the log files or locations that you specify, collects log events,
and forwards them either to Elasticsearch or Logstash for indexing. In current solution, Filebeat
acts as a Kafka Producer that collects JSON data generated by Suricata and forwards them to
StreamHandler (Message Broker)

PLEDGER

Handbook

(7

57

e StreamHandler, as already mentioned is a data streaming and analytics platform based on
Apache Kafka offering:
o Real-time monitoring and event-processing
o Distributed messaging system
o High fault-tolerance
o Elasticity - High scalability
e Logstash, which is part of the ELK stack, is used to dynamically ingest, transform and ship data
using data processing pipelines (input-filter-output). It can be used to ingest data of all shapes,
sizes or sources, parse and transform data on the fly and route data to a great variety of
outputs.
In current solution, Logstash acts as a Kafka Consumer that is responsible for:
e Collecting data from StreamHandler (Message Broker).
e Decoding, parsing, formatting and enriching of data.
e Forwarding data to Elasticsearch
e Elasticsearch, which is part of the ELK Stack, is an open-source, distributed, RESTful search and
analytics engine that centrally stores your data for lightning-fast search, fine tuned relevancy,
and powerful analytics that scale with ease. In current solution, Elasticsearch acts as a time
series Data Base, where all network traffic from all distributed servers is centrally persisted.
e Kibana, which is part of the ELK Stack, is used for data visualization using custom visualization
panels & dashboards. It has built-in support for authentication and authorization and a great
variety of tools for interacting with Elasticsearch.

This architecture is specifically designed to support a decentralized approach in the deployment of
cybersecurity appliances on the edge (virtual Intrusion Detection, virtual Honeypot, virtual Deep
Packet Inspection etc.). It then allows the project to aggregate all the network logs and threat
information into a SIEM-like interface based on the ELK Stack. The use of the Kafka-based
Streamhandler platform ensures that high throughput can be achieved, thus facilitating the data
ingestion process from multiple instances across the Cloud-Edge continuum. This solution is designed
to be able to aggregate data from multiple compute tenants/slices, as dedicated security services run
in each slice can stream their results through Kafka providing an operational picture across the
infrastructure that allows threats to be afficiently addressed by the Pledger provider.

2.10.1.1 IDS Modes

Pledger examines and implements two different IDS approaches, that both add significant value to
gain clear insight about potential network threats and therefore help security analysts to apply
efficient mitigation actions. Both approaches are compliant with the decentralised architecture,
although the deployment and configuration of the IDS differs in order to provide two distinct
functionalities.

Threat Detection mode

In the Thread Detection mode, as it can be seen in the following figure, the IDS component analyzes
only the traffic that is accepted by the applied Firewall rules. In this way, administrators can detect any
severe security vulnerabilities that have to be addressed. The IDS acts as part of the perimeter defenses
and identifies threats within the cloud infrastructure.

PLEDGER
Handbook

58

&2

Internet

Firewall

1DS Solution

Figure 57: Threat Detection Mode —
IDS

Honeypot Mode

In computer security terms, a cyber honeypot is a sacrificial computer system that is intended to attract
cyberattacks. It mimics a target for hackers, and uses their intrusion attempts to gain information
about cybercriminals and the way they are operating or to distract them from other targets.

In the Honeypot mode, IDS follows a different deployment and configuration in order to log the threats
and is attached directly to the network interface(s), before any firewall rules are applied, as it can be
seen in the following figure. In this way, IDS can be configured properly to capture all the external
network traffic, including network threats and attacks, so that they can be studied in order to improve
the applied security policies.

&2

Internet

Firewall

1DS Solution

Figure 58: Honeypot Mode — IDS

Usage information

The user may connect to the ELK stack and visualise the aggregated data directly as shown in the
figure below. The threat screen provides more information on the individual threats. A geographical
indication of the origin of offending IP addresses is also available. As seen in these screens, users may
select to filter the information shown on screen per IDS instance (threat detection, or honeypode
mode), service, protocol, country, alert, threat severity etc.

G PLEDGER
Handbook

=

= @ [osnvosc Surcata: Alerts (Overview)
Full screen Share Clone Eon

Bv
®

« Agd filter

Alorts Threats Flows HTTP ONS SSH TLS SMB NFS Rawlogs Statistics

‘Suricats instance
Aert Catogory
- a onm o
Aot Signatire . LIJ J-I o cies 0
- . sl UM snuibngita. =,
390000 J0I26VIV 100 J0I30TI0 0000 I0IFQVI0 12 0230101 0000 0G2QTAT 1290 MIIOI0T SOOE INIIIOY 1290 * Other 0
Severity per 60 mimaes
- Alert Categories (records) Alert Signatures (records) Alert Actions (recerds)
Clent ® Generc Protocol Co ® SURCATA TLS inv. ® sicwed
\l @ Attemotes Do of O\l \ ® SURKCATA TLS .
: act ® Wisc Amack @ SURCATA TCPve
@ SURICATA STREA.
Server (© SURICATA STREA
e v d © SURCATA STREA-
@ E7 D05 Possie
Figure 59: Main alerts page
= @ [oosnvoars Suricata: Throats (Pubkic Threats) ©c = @

Fulscreon Share Clone Edit
B
®

« Add fitter

Alorts Threats Flows HTTP DNS SSH TLS SMB NFS Rawlogs Statistics

Lucene @V Last7 cays

Overview Messages

N
__

Lucene)V Last7cays

Public Threats = At-Risk Servers = At-Risk Services ~High-Risk Clients.

R - |

synesis” Lite for Suricata

59

o

Threats o ® Bad Reputatt
L 894 : s
: . C
Alert Category : wd o * Warring)
v S——— xcr100000 00000 w0301 908 Noticn
per 60 minutes. © O
Adert Signature.
Public Attackers Signatures. Vulnerabilities ® Reputations.
\ v
Cllent Name Chent Nerts o Signature Alerts. 1P Reputation Aserts
Severity 116202162106 110.202182106 134 - L - No resus found presivy s
SURICATA TLS invalid recora/trathic 23000 £
- & 1802546679 1802548879 4 bretorce .
SURICAT rvatd handshase message
nasver naaser: 3 icdinal ik et 4
Clent 66387491 68187491 2 oo] s B o ™
SURICATA STREAM Packet tmestamo. 220044 "»
. . 2005734 2005724 2 e acache 2
SURICATA STREAM SHUTDOWN RST invetid 10046
18025417487 18025417487 2 ol o e . bot 2
SURICATA STREAM Packet with vaid ack 2065 6
Werver 180.262165.189 160252165189 2 Govecor 2
ET DOS Possitie NTP DO0S inbound Frequent Un- 2007919 .
o " 124152185167 124352185967 2 Acthed MON_LIST Requests IMPL 0103 exm 2
121.20194145 1212019448 2 SURICATA TP option invaid length 2200008 1 L3 2
= & [osnvoars Surcata: Flows (Geo IP) e = @
T R ———
@v Lucene @Y Last7days v |
@ «Add tilter
Alerts | Threats Flows | HTTP ONS | SSH | TLS SMB | NFS | RawLogs | Statistics Qvarview 'Talkers ' Services Sankey ' GeolP | Messages synesis” Lite for Suricata
Countries (records) wes Cities (records) Autonomous Systems (records)
Suricata Instance
@ Gernany @ Nurembery l ® batzner e G-]
¥ ‘\ @ United States L9 @ Hengiten < ® putic
® ougaria ‘ @ Astoumn § @ OvH sAS (16276)
Counwry b ® Fonce ® tejing @ DigitaiOcean, LLC
v ® China . ® san Franciaco @ Hangzhou Albab-
® Russis 7'7/4// 1o ® untsio @ Amazoncom, Inc.
oy @ Netherlands. Ill‘l @ Rostov-on-Don @ netcup GmbH (19
' - F i) o,
1 N, Server Geo Locations (records)
s {0, "%
| O
v L@
oy
Server — '
v @ ormH
| fERICA - o
o)
Service % (o] K
0 Q
v
R
e

Figure 61: Flows (geographical origin)

PLEDGER
Handbook

(7

60

2.10.1.2 Deployent and configuration

The components of the distributed cybersecurity network streaming platform are containerized, so
their deployment is controlled through docker-compose configuration files, controlling the definition
of the different services, the network among them and their associated volumes. The possibility of
instantiating the application with or without an ELK stack at the same host machine is offered.

It is also straightforward to configure the operation mode of the IDS instance (threat detection, or
honeypot mode) by modifying an environment file accordingly. For the deployment in threat detection
mode, appropriate firewall rules should also be applied (for e.g., through linux iptables) at the
corresponding host where the IDS instance is deployed. Combining an IDS instance in threat detection
with one in honeypot mode (sharing a common ELK instance) can be used to compare and assess the
performance of the IDS system, by indicating which types of threats are blocked by the firewall in
threat detection mode, and which ones can still pass the firewall. This was one of the subjects of the
corresponding IDS demonstration that is available in PLEDGER YouTube channel

PLEDGER
Handbook

https://www.youtube.com/watch?v=Dgdm-g24cGk&t=67s

(7

61

2.11 SLA violation

2.11.1 Monitoring engine gathers and stores data about an application health.

The Monitoring Engine is used by the SLA Framework to connect to the correspondent infrastructure
monitor (i.e. Prometheus instances deployed in the different infrastructures) to gather the metrics
values defined in the SLAs guarantees

2.11.2 The data is analysed by the SLA Manager to identify if there’s any breach in the
application guarantees.

The SLAs evaluation is done every minute, and when it detects a violation (see figure Figure 37) it sends
a notification to other PLEDGER components via Kafka.

2.11.3 If there is any violation detected, the SLA Manager sends this information to the
Blockchain Framework and the DSS to take any corrective action.

When a violation is detected, the SLA Framework sends a message to Kafka (see figure Figure 38). This
message can be read from other PLEDGER components, like the Blockchain Framework and the DSS.

PLEDGER
Handbook

62

2.12 Application redeployment

The objective of this section is to show how the DSS continuously monitor the system and command
new actions to the orchestrator. This section is the same as 2.6.1, with the DSS continuously monitoring
the data coming from SLA Lite, Monitoring Engine etc. and applying re-deployment strategies.

2.12.1 Whenever an SLA violation occurs and the DSS is notified, it takes the decision of
redeploying an application in order not to lose QoS.

With the continuous monitoring done by the DSS, QoS is maintained continuously offloading, staling
and adjusting resources allocated to the DApps. As an example, Figure 62 shows a service, considered
critical, as a SLA violation has been received and offloading or scaling is required; similarly, Figure 63
shows a service considered “steady” as no SLA violations are received for some time, so a reduction of
resources can be done, eventually leading to offloading back to the edge.

- o e 2 —G

& > C A NotSecure | 192.168.111.52:30928/critical-service * %@

i Apps [Google [Home [Done [Ideas [ToDo [Working Reading List

Critical Services
D+ Timestamp Created $ Timestamp Processed & Action Taken 3 Score $ Details ¢ Monitoring Period Sec $ Service ¢

1 Jun 3, 2021, 1:15:03 PM Jun 3, 2021, 1:15:03 PM none 108 click View 300 risk-detector

Showing 1 - 1 of 1 items.
1

pledger-project.eu

Figure 62: DSS: critical service found, that might require offload

- i i X

& 5 C A NotSecure | 192.168.111.52:30928/steady-service * %@

i Apps [Google [E Home [Done [Ideas [ToDo [Working Reading List

Steady Services

D~ Timestamp Created $ Timestamp Processed & Action Taken & Score $ Details ¢ Monitoring Period Sec ¢ Service
1 Jun 3, 2021, 1:10:00 PM Jun 3, 2021, 1:17:01 PM none 300 click View 3600 tram-detector
2 Jun 3, 2021, 1:10:00 PM Jun 3, 2021, 1:17:03 PM none 300 click View 3600 risk-detector

Showing 1 - 2 of 2 items.

pledger-project.eu

Figure 63: DSS: steady service found, that might require a scale down

PLEDGER
Handbook

63

For more information, Table 3 reports the DSS optimization demos available on PLEDGER YouTube
channel.

Title Link

DSS_#2: DSS increasing resources and
offloading to the cloud and back to the edge

DSS_#3: “DSS installation from source code

DSS_#4: “KinD cloud-edge K8S environment
setup and DSS manual operations

DSS_#5: “DSS scaling up/down based on SLA
violations

DSS_#6: “DSS scaling out based on SLA
violations

DSS_#7: “DSS offloading to the cloud based on
SLA violations

DSS_#8: “DSS optimising latency on cloud-edge
K8S using ECODA

DSS_#9: “DSS optimising latency on cloud-edge
K8S using ECODA and SLA violations

DSS_#10: “KinD cloud-edge-faredge K8S
environment setup

DSS_#11: “DSS optimising latency on cloud-
edge-faredge K8S using TTODA

DSS_#12: “DSS optimising latency on cloud-
edge-faredge K8S using TTODA and SLA
violations

DSS_#13: “EA-ECODA optimisation

Table 3: DSS optimisation demos

2.12.2 DSS notifies the Orchestrator.

This section is the same as 2.8, with the DSS communicating a new action to the executed by the
Orchestrator.

2.12.3 The Orchestrator stops the application, deploys it in a different node and starts it
again.

E2CO application connects to the new infrastructure to deploy there the application. Then, it removes
the application from the old infrastructure. The status of the application and the infrastructure where
it is deployed and running is shown in the E2CO swagger Ul (Figure 64) and also in the ConfService
application.

G PLEDGER
Handbook

https://www.youtube.com/watch?v=vfohE_d6XfA
https://www.youtube.com/watch?v=qpyJC9fU7aw
https://www.youtube.com/watch?v=haUBihzrxdc
https://www.youtube.com/watch?v=2q_dVuwUS9w
https://www.youtube.com/watch?v=i5kQy4HOceA
https://www.youtube.com/watch?v=q00eCdPXY2c
https://www.youtube.com/watch?v=360YbWvu7YU
https://www.youtube.com/watch?v=YEx__AI44h8
https://www.youtube.com/watch?v=5OI8X9zq-bU
https://www.youtube.com/watch?v=6lR6IgEuwCo
https://www.youtube.com/watch?v=J7T4QODMotM
https://www.youtube.com/watch?v=VSCBOREAk2E

=

64

Curl

13:31000/api /v1/app: Authorization: Bearer eyJhbGci0ilIUzI1NiIsInRScCIGIkpXVCD:

-y JFbHFpbCI6nd 17XNGQGA LYWL s LmNvbSL s ImV4cCI6MTc:

Request URL

1000/ api /v1/apps

Server response

Code Details

200 Response body
"E2(0Version™:
"List":
fi

"2022-11-30 17:47:12.476545489 +0000 UTC m—+2256136.238879198"
2.476545489 +0060 UTC m=+2256136.238879198",

scas’
"locations™

"description™: "NOT_DEFINED",
"pledger-demo-v2x-slice”,

"2022-11-38 17:47:12.476545489 +0000 UTC m=+2256136.238879198",
2022-11-30 17:47:12.476545489 +0000 UTC m=+2256136.238879198"
name”™: "risk-detector”

Figure 64: E2CO Swagger Ul: Application status

PLEDGER

Handbook

65

2.13 Penalties

In case that an SLA is breached, the corresponding violation notification reaches the blockchain
network and its deployed refunding mechanisms. Automatically, these mechanisms are triggered and
the refunding processes unfolds with regards to the severity of the violation occurred. In the following
figures, the different steps of the penalty workflow are depicted. In simple terms they consist of:

e Blockchain receiving violation notifications
e User balance impacted
e Violations stored securely on the DLT

2.13.1 The Blockchain Framework receives the same notification and based on the
severity level, decides the penalty to be applied to the infrastructure provider.

As soon as violation notifications reach the DLT (similar instance in Figure 45), the refund mechanism
are automatically triggered and the corresponding users balances are impacted according to the
severity of the violation.

Welcome filippo Hello, filippo
) § Your balance is
‘. Balance » ,‘ 9997.91
Figure 66: A logged in user checks their balance Figure 65: User balance has been impacted due to
SLA breach.

2.13.2 This information is available within the smart contract.

The corresponding result of the refund operations include the account balances, the user accounts
addresses, the compensation amounts, and the related violation data. This result is securely stored on
the DLT. The following figures showcase the storing on the chain of three (3) types of violations:

e Warning
e Serious

e Catastrophic

G PLEDGER
Handbook

66

OrgéMsP

{OrgaMSP"}

sla-version-2-194

ENDORSER TRANSACTION
Time: 2022-12-06T21:25:47.9072
Direct Link: hitp://147.102.19.6:8000/?

10761¢

So—— v root: [] 2items

» 0) 2keys
» 1:) 2keys
Writes:
1l 2items
» 0 {} 2keys
v 1: [} 2keys
chaincode: "sia-version-2-194"
v set: | 1ltem
v 0:)} 3keys
key: “contract 194"

Is_delete: faise

**fillppo”), "client™:["1d™-"6 "*rol"), "creation®:"0001-01-01TC

€":"8"),"RefundValue™: 11, "TotalVi

Figure 67: A warning violation stored on the DLT

Creator OrgdmspP
MSP:

Endorser: {"Org4MSP"}

Chaincode sla-version-2-194
Name:

Type: ENDORSER TRANSACTION
Time: 2022-12-06T21:27:27.102Z

Direct Link: http:/147.102.19.6:8000/?
a2873e360 331cbedc724011beb52cac39ee7743126¢3d

chaincode: “sla-version-2-194"

v [1item

v 0: () 3keys

key: "confract 194
Is_delete: faise
value: "[id":" 184" "name":"sla-te:
t_execution®:*0001-01-01700:00:00Z"},"details":{"id":" 194
‘name”:"Nlippo"}, "clie: ol'},"creatic
*8"),"Refund’ 1 c 3,7],"DailyVaiue™:0.55, DailyViolations™[1 ‘IU‘,"

Figure 68: A serious violation stored on the DLT

PLEDGER
a Handbook

=

Creator
MSP:

Endorser:
Chaincode

Direct Link:

PLEDGER
Handbook

OrgamsP

[Org4MSP")
sia-version-2-194

ENDORSER TRANSACTION
2022-12-06721:28:15.8472

hitp://147.102.19.6:8000/?

13451, 10e49bd3167

v root:] 2items
» 0: () 2keys
» 10 () 2keys

v root: [] 2 items
» 0 () 2keys
v 1: {} 2keys
chaincode: "sia-version-2-194"
v set: [] 1hem
v 0: {} 3keys
Key: “contract_194"
is_delete: false
value: "["id":"194" "name""sia-test- 11", "state™ "started" "assessment":{*first_execution":"0001-01-01T00:00:00Z","las
t_execution™:"0001-01-01T00:00:002"},"details" 194" “type™."agreement” "Name":"sia-test-11" “provider.{"i
d"*3" "name":"lippo”),"client™:{"id":"6","name""rol") "creation":"0001-01-01700:00:00Z" "guarantees™:null"servic
€":"8%),"RefundVaiue™: 11, "TotaiVioiations™[3,3,7], "DailyValue™:1.155,"DailyViolations™[1,1,1])"

Figure 69: A catastrophic violation stored on the DLT

67

(7

68

3 Applicability examples

In order to fully grasp how PLEDGER can be deployed and what is the added value of this software,
applicability examples are presented in this section. These applicability examples showcase how
different components of the pledger solution are incorporated in specific Use case pipelines.

3.1 Edge infrastructure for enhancing safety vulnerable road users

The ever-growing popularity of micro-mobility transportation in cities has introduced new challenges
related to the safeguarding of the safety of pedestrians and road users: these include the drafting of
new legislation to accommodate the increasing number of scooters and bicycles, the adaptation of city
infrastructures with dedicated lanes for micromobility users, etc.

The main goal of this use case is to reduce the number of accidents on the road, especially those related
to the use of micro-mobility transportation in cities, by introducing the use of dedicated edge
infrastructure to deploy a service that can help to increase the safety of vulnerable road users (VRUs)
about risky situations. Applied to the specific use case scenario developed in Pledger, the so-called risk
detection and notification system (RDNS) alerts VRUs of potential risks as they approach a tram station
while pedestrians are entering or exiting the tram.

In this use case, information about the location of electric scooters is gathered via IEEE 802.11p radio
communication. Vehicular data coming from on-board units (OBUs) attached to electric scooters is
shared with the RDNS via road-side units (RSUs). Through the RSUs, OBUs can communicate with the
RDNS, which runs in the compute infrastructure. Based on the scooters’ location data, which is
obtained from the OBUs via vehicular communications, the RDNS detects whether trams and scooters
are simultaneously located by (or approaching) the vicinity of a tram station; the RDNS then sends a
notification to electric scooter users, encouraging them to exercise precaution when navigating
through a potentially crowded area as passengers enter and leave the tram. For that purpose, a custom
gadget has been developed which sends out an audio-visual warning signal (buzzer + LED) to scooter
riders.

In order to implement all required features for this use case, a number of integrations with Pledger
components have been performed, as described below.

3.1.1 Infrastructure management: network slicing.

This use case relies on the use of a city-wide infrastructure, which is distributed and shared among
different parties. In addition, this infrastructure is heterogeneous, as it includes radio nodes and
compute nodes, which are managed differently. This increased complexity can be managed by
performing infrastructure reservation through network slicing.

PLEDGER
Handbook

(7

69

. \ ~ N
e T r

Q)
08 \n {[) * . ConfService and

SOE, RAN Controller Orchestrator
((([))) slice infrastructure trigger slicing

City-wide infra is l Q Q o) \
shared, heteroge- \./
neous, distributed Xy, (o 2 Lol
o]
(o}

o

Dedicated slice with end-to-end
connectivity deployed in time-
effective manner

Figure 70: Network slicing workflow in the use case

In Pledger, dedicated network slices can be provisioned at the touch of a button, as represented in
Figure 70. In Pledger, the modules involved in the process of network slicing are the SOE, RAN
Controller, ConfService and Orchestrator. These modules perform the provisioning of a network slice
over the use case’s cloud native infrastructure, providing end-to-end connectivity and automated
configuration of radio resources, as well as soft resource isolation. Slices are provisioned from the
ConfService’s dashboard at the touch of a button, as previously shown in Figure 51 and Figure 52; in
this use case, however, vehicle-to-everything (V2X) slices with |IEEE 802.11p radios are deployed
instead of 5G slices.

Figure 71 captures the Pledger modules and dependencies that enable end-to-end network slicing.
After the slice provisioning request is activated, the ConfService sends a slice creation request to the
Orchestrator, along with a relevant set of configuration parameters, using Kafka. Next, the
Orchestrator sends a flow of API calls to the SOE’s northbound interface. The SOE creates a compute
chunk and a network chunk over the underlying infrastructure, and it interacts with the RAN Controller
for the creation of a radio chunk and the activation of the network slice. In this use case, the activation
of the network slice requires the deployment of a containerized V2X software stack, i.e., a set of
software components that enable communication between the road side units (which contain the
radio elements) and the RDNS.

PLEDGER
Handbook

(7

70

uc2
infrastructure kU bernetes ‘

SLICE #1
Dedicated Kubernetes
SOE & RAN computational resources
I
Controller
A Containerized| | oo\ e
REST API V2X stack
brchestrator
VLAN VLAN
T Kafka #2250 #2251
Conf (()) ((A))
Service
IEEE IEEE
802.11p 802.11p
radio radio
node node

Figure 71: End-to-end V2X slicing - integration diagram

Through Pledger, the provisioning of network slices is a simple, seamless and very time-effective
process: as a reference, it takes 61 seconds to provision a V2X network slice through Pledger, an
improvement of over 11 times of the time required for an equivalent manual deployment. In addition,
manual deployments must be performed by a highly skilled technician with a broad knowledge of
networking topics; in contrast, no such expertise is required when provisioning network slices from
Pledger.

3.1.2 Smart contracts

In this use case, the RDNS should ideally be always available, i.e. the pods that compose it need to be
up and running and responsive, so that risky situations can always be detected and alerted to road
users. However, on occasions, the availability of the application is not guaranteed due to external
factors.

In Pledger, the application availability is constantly monitored by the Monitoring Engine. When an SLA
violation occurs, the SLA Lite detects it and sends a violation alert that is fed to a smart contract (that
has been established beforehand among interested parties) through Kafka. A suitable refund policy is
defined and automatically applied, according to the severity of the SLA violation, and the resulting
refund is added to the smart wallet's balance. In this use case, refunds are calculated and applied once
a day; however, the implementation of refund policies in Pledger is very flexible and highly
customizable. A top-level diagram of this functionality is represented in Figure 72.

PLEDGER
Handbook

(7

71

- ~ ~
- = ¢
Wallet =
Smart Contract SLAs are Monitoring
is created implemented Reports Metrics

iA \{i\cil\ation
En
=

Refund

Figure 72: Pledger's smart contracts in road safety use case

Pledger's functionalities related to the issuing of smart contracts bring several advantages to this use
case. Relevant refund-related metrics are automatically and continuously monitored in a manner that
is transparent to the infrastructure and service providers. In addition, refunds are
automatically calculated by the smart contracts according to some previously implemented refund
policies, then added to the smart wallet's balance.

3.1.3 Sensitive information management with Pledger’s DLT

The RDNS generates user-related information containing the location of users at a certain instant,
detected collision risk events, and corresponding timestamps. This information is documented in logs
that must be securely handled. In Pledger, these logs are securely pushed to Kafka and retrieved by
the DLT. By subscribing to the relevant Kafka topic, Pledger's DLT gathers RDNS logs, then securely
stores them in the blockchain. Only authorized users have access to relevant and anonymized statistics.
For example, authorized users can retrieve the number of risky situations that arose during a given
time window. In this manner, data is securely stored, ensuring the users' privacy rights are protected.
This functionality is represented in Figure 73.

The use of Pledger for the management of sensitive information brings several advantages to this use
case. By storing sensitive data in the blockchain, the DLT ensures the protection of users' data related
to the risk detection and notification service. In addition, this data is anonymized and can be accessed
by authorized users only.

PLEDGER
Handbook

(7

Q-

RDNS
instance

User
position logs

RDNS generates
sensitive information
(device position logs,
logged events)

% kafka ~N

10i0
ioio &

DLT retrieves logs

from relevant Kafka topic

~

N
e

H7

Position/Event logs

in the blockchain

are securely stored

N [

&

Only authorised
users have
access to logs

-

Figure 73: Management of sensitive user information

3.1.4 Delay management with Pledger’s DSS

72

Road hazard signaling applications rely on the timely execution and reception of awareness and
notification messages. The maximum allowable round-trip delay is standardized by ETSI, such that
users are notified of risky situations in a timely manner.

When the RDNS is running with a large number of end users, the computational resources assigned to
the application need to be large enough in order to keep the delay low. In Pledger, the monitoring
engine continuously monitors the RDNS delay. In addition, delay thresholds have been defined such
that SLA violations are reported when these thresholds are crossed. Upon delay violations, the DSS
performs a scaling up of the resources assigned to the risk detection and notification service, such that
the delay returns to a lower value. In order to use resources efficiently, the DSS also performs a scaling
down of the resources assigned to the application if no violations occur during a given period of time.
This flow is represented in Figure 74.

PLEDGER

Handbook

(7

73

-® =
o [l
RDNS Resource ’ — ‘ e
instance allocation SLA
violations are Monitoring Engine
monitored Reports Metrics

i
RDNS runs with E Q
~@

~

high number of
users and set
resource allocation

DSS performs scaling
(up or down) action

Figure 74: Management of a critical RDNS service in Pledger

The use of Pledger for the management of critical services brings several advantages to this use case.
It guarantees the quality of service of the RDNS, ensuring that road safety application requirements
are met while using the available computational resources in an efficient manner (for example, by
liberating resources when the delay is consistently low). The resiliency of the application is also
improved, by increasing allocated resources as needed.

The RDNS delay performance has been tested under three different scenarios. In the first scenario, the
application runs with fixed, sometimes scarce, resources. In the second scenario, the application runs
with increased (but still fixed) resources. In the third scenario, the DSS' scaling algorithm is applied,
and the application runs with variable resources. It was demonstrated that the application of Pledger’s
DSS algorithms translates into a more consistent quality of service and user experience, as the delay
variance is much lower than in the other two tested scenarios. The average resource utilisation is
reduced, and the average delay is improved by a factor of 2.75 with respect to the second test scenario,
and by a factor of 4.8 with respect to the first test scenario.

In summary, the dynamic resource allocation capabilities of Pledger enable the efficient use of
computational resources. In addition, the application behavior is more consistent due to the smaller
delay variance when Pledger is used. Moreover, the quality of service of the RDNS is guaranteed by
increasing the resources to the application when the delay deteriorates. In this manner, the road safety
application requirements are met, even when the computational resources are under stress.

PLEDGER
Handbook

(7

74

3.2 Manufacturing the data mining on edge

The UC3 supports manufacturing experts to determine the process stability, enabling the improvement
of it in the area of metal processing of highest accuracy. Using the developed analytical services, the
expert is able to analyse the process and find deviations in the process in three regards:

e Stability of media consumed by the machine (pneumatic and electric)

e Stability of parts produced by the machine in terms of cycle time and quality

e Thermal stability
The determination of the thermal stability is of high interest for the machine operator. The (metal)
components of the machine are extending due to thermal influence during the machine movements
until they reach a plateau. A module was developed to estimate a thermal stability performance
indicator and the subsequent estimation about the thermal condition of the machine. The result is an
instruction to the machine about the further proceedings (continue warm-up, go into production
mode), which is transferred directly to the Programmatic Logical Control (PLC) on which the machine
reacts within the time of one controller cycle.

Furthermore, modules to evaluate the media-consumption and parts produced by the machine were
developed to enable the analysis of the process for a manufacturing expert. They are deployed on the
industrial PC, acting as an edge device. These PCs are very robust, with the drawback of limited
resources.

Using Pledger, the limitations of an edge device regarding computational power can be overcome, by
offloading applications to the cloud to ensure the QoS and associated SLAs of the applications.
Furthermore, sensitive information obtained by the application, can be stored securely on the DLT
giving access to authorized parties only.

3.2.1 Automated deployment and performance monitoring

FILL machines are located across the world, therefore services need to be orchestrated automatically
and performance should be easy to monitor.

This task can be achieved by using Pledger and its orchestration and performance monitoring
functionalities. Using ConfService the service to be orchestrated can be configured and with the push
of a button it will be deployed by the Orchestrator automatically on the infrastructure of choice. As
soon as the application is running, relevant metrics are extracted and pushed via StreamHandler to
Monitoring Engine. The Service Provider can observe the performance on a dashboard right
afterwards.

This process is illustrated in Figure 75.

PLEDGER
Handbook

75

ul

/\/H—

Service Provider

Monitoring Engine

T

[uc3 ‘
infrastructure ‘

Orchestrator e { [— - = - }

UC application l

ConiService ‘

Figure 75: Automatic deployment and performance monitoring in UC3

3.2.2 Automated offloading of applications to the cloud based on decision making

During the manufacturing process, different analytical services analyze the running process.
Depending on the complexity and involved sub-processes, the load can be different. The thermal-
stability component is latency-critical as the machine needs to react on the results of the component
and waiting times > 90ms decrease the QoE of the machine operator in the shopfloor. Lack of
computational resources increase the calculation time for the service. To ensure enough resources to
the component, another non-latency critical component can be offloaded to the cloud. Pledger
supports this process by monitoring the performance of the thermal-stability component and the
associated SLAs. In case of a SLA violation, the DSS triggers an offload of the media-consumption
service to a suitable cloud infrastructure based on benchmarking and app profiling to ensure the QoE
for the machine operator. Figure 76 shows this procedure.

App Profiler Benchmarking

SLA)
Violation
Monitoring Engine ———3 SLA Lite ‘&—b DSS
'y
triggers
offload

Orchestrator

ucs
infrastructure

q -
L———“ UC application

L)

Cloud
infrastructure

UC application

Figure 76: Automated offloading in UC3

G PLEDGER
Handbook

76

3.2.3 Management of sensitive information

During the manufacturing of parts, detailed information is extracted to visualize the process to the
manufacturing experts to enable them the analysis of the process. The machine builder is interested
in some of the results, too, especially to improve the engineering and to explore new business models
based on pay-per-use. However, this information is considered sensitive and should be shared with
authorized parties only. Using the Pledger DLT, the authorized access to this information is ensured.
The application stores the information on the DLT and an authorized user can retrieve the desired
information on a Ul. This process is illustrated in Figure 77.

ul
/‘\/ o
Service Provider

Monitoring Engine
\
Orchestrator jf - — 1
7 ' <-—b UC application |

uc3 J
infrastructure '

ConfService ,

Figure 77: Management of sensitive information in UC3

G PLEDGER
Handbook

